hadoop2.9.0之前的版本yarn RM fairScheduler调度性能优化

Posted 宋朝林

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop2.9.0之前的版本yarn RM fairScheduler调度性能优化相关的知识,希望对你有一定的参考价值。

对一般小公司来说 可能yarn调度能力足够了 但是对于大规模集群1000 or 2000+的话  yarn的调度性能捉襟见肘

恰好网上看到一篇很好的文章https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html

参考了YARN-5969 发现hadoop2.9.0已经修正了该issue 实测提高了调度性能 

FairScheduler 调度方式有两种 

心跳调度:Yarn的NodeManager会通过心跳的方式定期向ResourceManager汇报自身状态 伴随着这次rpc请求 会触发Resourcemanager 触发nodeUpdate()方法 为这个节点进行一次资源调度

持续调度:有一个固定守护线程每隔很短的时间调度 实时的资源分配,与NodeManager的心跳出发的调度相互异步并行进行

  • 每次dataNode 发来心跳 时候作为一个event走下面方法
FairScheduler 类
 @Override
  public void handle(SchedulerEvent event) {
    switch (event.getType()) {
    case NODE_ADDED:
      if (!(event instanceof NodeAddedSchedulerEvent)) {
        throw new RuntimeException("Unexpected event type: " + event);
      }
      NodeAddedSchedulerEvent nodeAddedEvent = (NodeAddedSchedulerEvent)event;
      addNode(nodeAddedEvent.getContainerReports(),
          nodeAddedEvent.getAddedRMNode());
      break;
    case NODE_REMOVED:
      if (!(event instanceof NodeRemovedSchedulerEvent)) {
        throw new RuntimeException("Unexpected event type: " + event);
      }
      NodeRemovedSchedulerEvent nodeRemovedEvent = (NodeRemovedSchedulerEvent)event;
      removeNode(nodeRemovedEvent.getRemovedRMNode());
      break;
    case NODE_UPDATE:
      if (!(event instanceof NodeUpdateSchedulerEvent)) {
        throw new RuntimeException("Unexpected event type: " + event);
      }
      NodeUpdateSchedulerEvent nodeUpdatedEvent = (NodeUpdateSchedulerEvent)event;
      nodeUpdate(nodeUpdatedEvent.getRMNode());
      break;
    case APP_ADDED:
      if (!(event instanceof AppAddedSchedulerEvent)) {
        throw new RuntimeException("Unexpected event type: " + event);
      }
      AppAddedSchedulerEvent appAddedEvent = (AppAddedSchedulerEvent) event;

每次nodeUpdate 走的都是相同的逻辑

attemptScheduling(node) 持续调度跟心跳调度都走该方法
    // If the node is decommissioning, send an update to have the total
    // resource equal to the used resource, so no available resource to
    // schedule.
    if (nm.getState() == NodeState.DECOMMISSIONING) {
      this.rmContext
          .getDispatcher()
          .getEventHandler()
          .handle(
              new RMNodeResourceUpdateEvent(nm.getNodeID(), ResourceOption
                  .newInstance(getSchedulerNode(nm.getNodeID())
                      .getUsedResource(), 0)));
    }

    if (continuousSchedulingEnabled) {
      if (!completedContainers.isEmpty()) {  //持续调度开启时
       attemptScheduling(node);
      }
    } else {
      attemptScheduling(node);  //心跳调度
    }

    // Updating node resource utilization
    node.setAggregatedContainersUtilization(
        nm.getAggregatedContainersUtilization());
    node.setNodeUtilization(nm.getNodeUtilization());

 持续调度是一个单独的守护线程 

间隔getContinuousSchedulingSleepMs()时间运行一次continuousSchedulingAttempt方法

/**
* Thread which attempts scheduling resources continuously,
* asynchronous to the node heartbeats.
*/
private class ContinuousSchedulingThread extends Thread {

@Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
continuousSchedulingAttempt();
Thread.sleep(getContinuousSchedulingSleepMs());
} catch (InterruptedException e) {
LOG.warn("Continuous scheduling thread interrupted. Exiting.", e);
return;
}
}
}
}

之后进行一次node节点 根据资源宽松情况的排序

void continuousSchedulingAttempt() throws InterruptedException {
    long start = getClock().getTime();
    List<NodeId> nodeIdList = new ArrayList<NodeId>(nodes.keySet());
    // Sort the nodes by space available on them, so that we offer
    // containers on emptier nodes first, facilitating an even spread. This
    // requires holding the scheduler lock, so that the space available on a
    // node doesn\'t change during the sort.
    synchronized (this) {
      Collections.sort(nodeIdList, nodeAvailableResourceComparator);
    }

    // iterate all nodes
    for (NodeId nodeId : nodeIdList) {
      FSSchedulerNode node = getFSSchedulerNode(nodeId);
      try {
        if (node != null && Resources.fitsIn(minimumAllocation,
            node.getAvailableResource())) {
          attemptScheduling(node);
        }
      } catch (Throwable ex) {
        LOG.error("Error while attempting scheduling for node " + node +
            ": " + ex.toString(), ex);
        if ((ex instanceof YarnRuntimeException) &&
            (ex.getCause() instanceof InterruptedException)) {
          // AsyncDispatcher translates InterruptedException to
          // YarnRuntimeException with cause InterruptedException.
          // Need to throw InterruptedException to stop schedulingThread.
          throw (InterruptedException)ex.getCause();
        }
      }
    }

依次对node遍历分配Container 

queueMgr.getRootQueue().assignContainer(node) 从root遍历树 对抽象的应用资源遍历
    boolean validReservation = false;
    FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
    if (reservedAppSchedulable != null) {
      validReservation = reservedAppSchedulable.assignReservedContainer(node);
    }
    if (!validReservation) {
      // No reservation, schedule at queue which is farthest below fair share
      int assignedContainers = 0;
      Resource assignedResource = Resources.clone(Resources.none());
      Resource maxResourcesToAssign =
          Resources.multiply(node.getAvailableResource(), 0.5f);
      while (node.getReservedContainer() == null) {
        boolean assignedContainer = false;
        Resource assignment = queueMgr.getRootQueue().assignContainer(node);
        if (!assignment.equals(Resources.none())) { //判断是否分配到container
          assignedContainers++;
          assignedContainer = true;
          Resources.addTo(assignedResource, assignment);
        }
        if (!assignedContainer) { break; }
        if (!shouldContinueAssigning(assignedContainers,
            maxResourcesToAssign, assignedResource)) {
          break;
        }
      }
接下来在assignContainer 方法中对子队列使用特定的比较器排序这里是fairSchduler
  @Override
  public Resource assignContainer(FSSchedulerNode node) { 对于每一个服务器,对资源树进行一次递归搜索
    Resource assigned = Resources.none();

    // If this queue is over its limit, reject
    if (!assignContainerPreCheck(node)) {
      return assigned;
    }

    // Hold the write lock when sorting childQueues
    writeLock.lock();
    try {
      Collections.sort(childQueues, policy.getComparator());
    } finally {
      writeLock.unlock();
    }

对队列下的app排序

/*
     * We are releasing the lock between the sort and iteration of the
     * "sorted" list. There could be changes to the list here:
     * 1. Add a child queue to the end of the list, this doesn\'t affect
     * container assignment.
     * 2. Remove a child queue, this is probably good to take care of so we
     * don\'t assign to a queue that is going to be removed shortly.
     */
    readLock.lock();
    try {
      for (FSQueue child : childQueues) {
        assigned = child.assignContainer(node);
        if (!Resources.equals(assigned, Resources.none())) {
          break;
        }
      }
    } finally {
      readLock.unlock();
    }
    return assigned;
assignContainer 可能传入的是app 可能传入的是一个队列 是队列的话 进行递归 直到找到app为止(root(FSParentQueue)节点递归调用assignContainer(),最终将到达最终叶子节点的assignContainer()方法,才真正开始进行分配)

 优化一 : 优化队列比较器

 我们在这里 关注的就是排序

hadoop2.8.4 排序类 FairSharePolicy中的 根据权重 需求的资源大小 和内存占比 进行排序 多次获取

getResourceUsage() 产生了大量重复计算 这个方法是一个动态获取的过程(耗时)
  @Override
public int compare(Schedulable s1, Schedulable s2) {
double minShareRatio1, minShareRatio2;
double useToWeightRatio1, useToWeightRatio2;
Resource minShare1 = Resources.min(RESOURCE_CALCULATOR, null,
s1.getMinShare(), s1.getDemand());
Resource minShare2 = Resources.min(RESOURCE_CALCULATOR, null,
s2.getMinShare(), s2.getDemand());
boolean s1Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
s1.getResourceUsage(), minShare1);
boolean s2Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
s2.getResourceUsage(), minShare2);
minShareRatio1 = (double) s1.getResourceUsage().getMemorySize()
/ Resources.max(RESOURCE_CALCULATOR, null, minShare1, ONE).getMemorySize();
minShareRatio2 = (double) s2.getResourceUsage().getMemorySize()
/ Resources.max(RESOURCE_CALCULATOR, null, minShare2, ONE).getMemorySize();
useToWeightRatio1 = s1.getResourceUsage().getMemorySize() /
s1.getWeights().getWeight(ResourceType.MEMORY);
useToWeightRatio2 = s2.getResourceUsage().getMemorySize() /
s2.getWeights().getWeight(ResourceType.MEMORY);
int res = 0;
if (s1Needy && !s2Needy)
res = -1;
else if (s2Needy && !s1Needy)
res = 1;
else if (s1Needy && s2Needy)
res = (int) Math.signum(minShareRatio1 - minShareRatio2);
else
// Neither schedulable is needy
res = (int) Math.signum(useToWeightRatio1 - useToWeightRatio2);
if (res == 0) {
// Apps are tied in fairness ratio. Break the tie by submit time and job
// name to get a deterministic ordering, which is useful for unit tests.
res = (int) Math.signum(s1.getStartTime() - s2.getStartTime());
if (res == 0)
res = s1.getName().compareTo(s2.getName());
}
return res;
}
}

新版优化后如下

@Override
    public int compare(Schedulable s1, Schedulable s2) {
      int res = compareDemand(s1, s2);

      // Pre-compute resource usages to avoid duplicate calculation
      Resource resourceUsage1 = s1.getResourceUsage();
      Resource resourceUsage2 = s2.getResourceUsage();

      if (res == 0) {
        res = compareMinShareUsage(s1, s2, resourceUsage1, resourceUsage2);
      }

      if (res == 0) {
        res = compareFairShareUsage(s1, s2, resourceUsage1, resourceUsage2);
      }

      // Break the tie by submit time
      if (res == 0) {
        res = (int) Math.signum(s1.getStartTime() - s2.getStartTime());
      }

      // Break the tie by job name
      if (res == 0) {
        res = s1.getName().compareTo(s2.getName());
      }

      return res;
    }


    private int compareDemand(Schedulable s1, Schedulable s2) {
      int res = 0;
      Resource demand1 = s1.getDemand();
      Resource demand2 = s2.getDemand();
      if (demand1.equals(Resources.none()) && Resources.greaterThan(
              RESOURCE_CALCULATOR, null, demand2, Resources.none())) {
        res = 1;
      } else if (demand2.equals(Resources.none()) && Resources.greaterThan(
              RESOURCE_CALCULATOR, null, demand1, Resources.none())) {
        res = -1;
      }
      return res;
    }


    private int compareMinShareUsage(Schedulable s1, Schedulable s2,
                                     Resource resourceUsage1, Resource resourceUsage2) {
      int res;
      Resource minShare1 = Resources.min(RESOURCE_CALCULATOR, null,
              s1.getMinShare(), s1.getDemand());
      Resource minShare2 = Resources.min(RESOURCE_CALCULATOR, null,
              s2.getMinShare(), s2.getDemand());
      boolean s1Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
              resourceUsage1, minShare1);
      boolean s2Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
              resourceUsage2, minShare2);

      if (s1Needy && !s2Needy) {
        res = -1;
      } else if (s2Needy && !s1Needy) {
        res = 1;
      } else if (s1Needy && s2Needy) {
        double minShareRatio1 = (double) resourceUsage1.getMemorySize() /
                Resources.max(RESOURCE_CALCULATOR, null, minShare1, ONE)
                        .getMemorySize();
        double minShareRatio2 = (double) resourceUsage2.getMemorySize() /
                Resources.max(RESOURCE_CALCULATOR, null, minShare2, ONE)
                        .getMemorySize();
        res = (int) Math.signum(minShareRatio1 - minShareRatio2);
      } else {
        res = 0;
      }

      return res;
    }


    /**
     * To simplify computation, use weights instead of fair shares to calculate
     * fair share usage.
     */
    private int compareFairShareUsage(Schedulable s1, Schedulable s2,
                                      Resource resourceUsage1, Resource resourceUsage2) {
      double weight1 = s1.getWeights().getWeight(ResourceType.MEMORY);
      double weight2 = s2.getWeights().getWeight(ResourceType.MEMORY);
      double useToWeightRatio1;
      double useToWeightRatio2;
      if (weight1 > 0.0 && weight2 > 0.0) {
        useToWeightRatio1 = resourceUsage1.getMemorySize() / weight1;
        useToWeightRatio2 = resourceUsage2.getMemorySize() / weight2;
      } else { // Either weight1 or weight2 equals to 0
        if (weight1 == weight2) {
          // If they have same weight, just compare usage
          useToWeightRatio1 = resourceUsage1.getMemorySize();
          useToWeightRatio2 = resourceUsage2.getMemorySize();
        } else {
          // By setting useToWeightRatios to negative weights, we give the
          // zero-weight one less priority, so the non-zero weight one will
          // be given slots.
          useToWeightRatio1 = -weight1;
          useToWeightRatio2 = -weight2;
        }
      }

      return (int) Math.signum(useToWeightRatio1 - useToWeightRatio2);
    }

  }

用了测试环境集群 比较了修改前后两次队列排序耗时

 图中使用挫劣的方式比对 请观众凑合看吧^-^

 上面红框里为 新版本 下面红框为老版本 虽然没有进行压测 但是在同样的调度任务前提下 是有说服力的 在大集群上每秒调度上千万乃至上亿次该方法时  调度优化变的明显

上线压测时 在1000队列 1500 pending任务600running任务时 调度性能提高了一倍 还是比较明显的提升的

优化二 : 优化yarn调度逻辑

思想:在大规模集群中 资源利用率表现的并不好,为了提高资源利用率,开启持续调度 然而实践发现 资源利用率是上去了但是 集群调度能力很弱 处理跟释放的container并没有提高

排查原因是心跳调度跟持续调度 走相同的synchronized 方法修饰的attemptScheduling 导致竞争锁 分配和释放都变的缓慢 且队列排序分配 在集群pending任务巨多时异常缓慢

优化:1,启用持续调度 禁用心跳调度

    2,持续调度按批进行 间接减少队列排序造成的耗时影响

    3. 释放不重要的锁 解放性能

说干就干

开启yarn的持续调度 配置如下:

 <property>
    <name>yarn.scheduler.fair.continuous-scheduling-enabled</name>
    <value>true</value>
    <discription>是否打开连续调度功能</discription>
  </property>
 <property>

持续调度 每5ms执行一次上述方法 对node依次迭代执行

void continuousSchedulingAttempt() throws InterruptedException {
    long start = getClock().getTime();
    List<NodeId> nodeIdList = new ArrayList<NodeId>(nodes.keySet());
    // Sort the nodes by space available on them, so that we offer
    // containers on emptier nodes first, facilitating an even spread. This
    // requires holding the scheduler lock, so that the space available on a
    // node doesn\'t change during the sort.
    synchronized (this) {
      Collections.sort(nodeIdList, nodeAvailableResourceComparator); //对所有node 根据资源排序
    }

    // iterate all nodes
    for (NodeId nodeId : nodeIdList) {  //遍历所有的node
      FSSchedulerNode node = getFSSchedulerNode(nodeId); 
      try {
        if (node != null && Resources.fitsIn(minimumAllocation,
            node.getAvailableResource())) {  //判断该node 上现有的资源是否大于最小配置资源单位
          attemptScheduling(node);           //执行ttemptScheduling方法
} } catch (Throwable ex) { LOG.error("Error while attempting scheduling for node " + node + ": " + ex.toString(), ex); if ((ex instanceof YarnRuntimeException) && (ex.getCause() instanceof InterruptedException)) { // AsyncDispatcher translates InterruptedException to // YarnRuntimeException with cause InterruptedException. // Need to throw InterruptedException to stop schedulingThread. throw (InterruptedException)ex.getCause(); } } }

下面看下attemptScheduling方法

@VisibleForTesting
  synchronized void attemptScheduling(FSSchedulerNode node) {
    if (rmContext.isWorkPreservingRecoveryEnabled()
        && !rmContext.isSchedulerReadyForAllocatingContainers()) {
      return;
    }

    final NodeId nodeID = node.getNodeID();
    if (!nodes.containsKey(nodeID)) {  //合法性
      // The node might have just been removed while this thread was waiting
      // on the synchronized lock before it entered this synchronized method
      LOG.info("Skipping scheduling as the node " + nodeID +
          " has been removed");
      return;
    }

    // Assign new containers...
    // 1. Check for reserved applications
    // 2. Schedule if there are no reservations

    boolean validReservation = false;
    FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
    if (reservedAppSchedulable != null) {
      validReservation = reservedAppSchedulable.assignReservedContainer(node);
    }
    if (!validReservation) { //合法性判断
      // No reservation, schedule at queue which is farthest below fair share
      int assignedContainers = 0;
      Resource assignedResource = Resources.clone(Resources.none());
      Resource maxResourcesToAssign =
          Resources.multiply(node.getAvailableResource(), 0.5f); //默认使用该node最大50%的资源
      while (node.getReservedContainer() == null) {
        boolean assignedContainer = false;
        Resource assignment = queueMgr.getRootQueue().assignContainer(node);  //主要方法 依次对root树 遍历直到app 对该node上分配container
        if (!assignment.equals(Resources.none())) { //分配到资源
          assignedContainers++; //分配到的container个数增1
          assignedContainer = true; 
          Resources.addTo(assignedResource, assignment);
        }
        if (!assignedContainer) { break; }  //未匹配到 跳出
        if (!shouldContinueAssigning(assignedContainers,  //根据相关配置判断 现在分配的container个数 是否超出node上配置最大数 或node上的可用资源是否超出最小的配置资源
            maxResourcesToAssign, assignedResource)) {
          break;
        }
      }
    }
    updateRootQueueMetrics();
  }

针对上面源码 修改为如下内容:

持续调度一次分配五个node,减少每个node及分配过程排序的耗时操作。

 void continuousSchedulingAttempt() throws InterruptedException {
    long start = getClock().getTime();
    List<NodeId> nodeIdList = new ArrayList<NodeId>(nodes.keySet());
    // Sort the nodes by space available on them, so that we offer
    // containers on emptier nodes first, facilitating an even spread. This
    // requires holding the scheduler lock, so that the space available on a
    // node doesn\'t change during the sort.
    synchronized (this) {
      Collections.sort(nodeIdList, nodeAvailableResourceComparator);
    }
    ArrayList<ArrayList<NodeId>> newNodeList = inBatchesNodes(nodeIdList, batchNodeAssigon); // 按批次返回node
    for (ArrayList<NodeId> nodeList : newNodeList) {
      //每个node进行检查
      ArrayList<FSSchedulerNode> fsSchedulerNodeList = new ArrayList<>();
      try {
        for (NodeId nodeId : nodeList) {
          FSSchedulerNode node = getFSSchedulerNode(nodeId);
          if (node != null && Resources.fitsIn(minimumAllocation,
                  node.getAvailableResource())) {

            fsSchedulerNodeList.add(node);
          }
        }

          attemptSchedulings(fsSchedulerNodeList); // 批次进行attemptSchedule
        }catch (Exception e){
          LOG.error("Processing  attemptSchedulings error"+fsSchedulerNodeList
                  +":"+fsSchedulerNodeList.toString(),e);
          fsSchedulerNodeList.stream().filter(Objects::nonNull).forEach(node->{
            try {
            attemptScheduling(node); //有异常仍然走之前的逻辑
            } catch (Throwable ex) {
              LOG.error("Error while attempting scheduling for node " + nodeList +
                      ": " + ex.toString(), ex);
            }
          });
        }
    }

    long duration = getClock().getTime() - start;
    fsOpDurations.addContinuousSchedulingRunDuration(duration);
  }

 

  /**
   * 将传入的list 按size批次 返回
   * @param list
   * @param size
   * @return
   */
  private ArrayList<ArrayList<NodeId>> inBatchesNodes(List<NodeId> list, int size) {
    int listSize = list.size();
    //表示一共需要取几次
    int count = (list.size() % size == 0 ? list.size() / size : list.size() / size + 1);
    ArrayList<ArrayList<NodeId>> returnList = new ArrayList<>(count);
    for (int i = 0; i < listSize; i += size) {
      if (i + size > list.size()) {
        size = listSize - i;
      }
      ArrayList<NodeId> newList = new ArrayList<>(size);
      for (int j = i; j < i + size; j++) {
        newList.add(list.get(j));
      }
      returnList.add(newList);
    }
    return returnList;
  }

 

interface Schedulable 接口新增 方法
  /**
   * Assign list container list this node if possible, and return the amount of
   * resources assigned.
   */
  public List<Resource> assignContainers(List<FSSchedulerNode> nodes);

 

@VisibleForTesting
  protected void attemptSchedulings(ArrayList<FSSchedulerNode> fsSchedulerNodeList) {
    if (rmContext.isWorkPreservingRecoveryEnabled()
            && !rmContext.isSchedulerReadyForAllocatingContainers()) {
      return;
    }
    List<FSSchedulerNode> fsSchedulerNodes = new ArrayList(); //定义个新集合 添加通过检查的node 抽象对象 
    fsSchedulerNodeList.stream().forEach(node -> {
      final NodeId nodeID = node.getNodeID();
      if (nodes.containsKey(nodeID)) {
        // Assign new containers...// 1. Check for reserved applications
        // 2. Schedule if there are no reservations
        boolean validReservation = false;
        FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
        if (reservedAppSchedulable != null) {
          validReservation = reservedAppSchedulable.assignReservedContainer(node);
        }
        if (!validReservation) { //通过合法检查
         if (node.getReservedContainer() == null) {  //该node上 没有被某个container预留
            fsSchedulerNodes.add(node);
          }
        }
      } else {
        LOG.info("Skipping scheduling as the node " + nodeID +
            " has been removed");
      }
    });
    if (fsSchedulerNodes.isEmpty()) {
      LOG.error("Handle fsSchedulerNodes empty and return");
      return;
    }
    LOG.info("符合条件的nodes:" + fsSchedulerNodeList.size());
    List<Resource> resources = queueMgr.getRootQueue().assignContainers(fsSchedulerNodes); //传入node的集合 批量操作
    fsOpDurations.addDistributiveContainer(resources.size());
    LOG.info("本次分配的container count:" + resources.size());
    updateRootQueueMetrics();
  }
FSParentQueue 类中 添加实现
  @Override
  public List<Resource> assignContainers(List<FSSchedulerNode> nodes) {
    List<Resource> assignedsNeed = new ArrayList<>();
    ArrayList<FSSchedulerNode> fsSchedulerNodes = new ArrayList<>();
    for (FSSchedulerNode node : nodes) {
      if (assignContainerPreCheck(node)) {
        fsSchedulerNodes.add(node);
      }
    }
    if (fsSchedulerNodes.isEmpty()) {
      LOG.info("Nodes is empty, skip this assign around");
      return assignedsNeed;
    }

    // Hold the write lock when sorting childQueues
    writeLock.lock();
    try {
      Collections.sort(childQueues, policy.getComparator()); //排序又见排序 哈哈
    } finally {
      writeLock.unlock();
    }

    /*
     * We are releasing the lock between the sort and iteration of the
     * "sorted" list. There could be changes to the list here:
     * 1. Add a child queue to the end of the list, this doesn\'t affect
     * container assignment.
     * 2. Remove a child queue, this is probably good to take care of so we
     * don\'t assign to a queue that is going to be removed shortly.
     */
    readLock.lock();
    try {
      for (FSQueue child : childQueues) {
        List<Resource> assigneds = child.assignContainers(fsSchedulerNodes); //同样传入node集合
        if (!assigneds.isEmpty()) {
          for (Resource assign : assigneds) {
            assignedsNeed.add(assign);
          }
          break;
        }
      }
    } finally {
      readLock.unlock();
    }

    return assignedsNeed;
  }

 

app最终在FSLeafQueue节点上得到处理(第一版)

@Override
  public List<Resource> assignContainers(List<FSSchedulerNode> nodes) {
    Resource assigned = Resources.none();
    List<Resource> assigneds = new ArrayList<>();
    ArrayList<FSSchedulerNode> fsSchedulerNodes = new ArrayList<>();
    for (FSSchedulerNode node : nodes) {
      if (assignContainerPreCheck(node)) {
        fsSchedulerNodes.add(node);
      }
    }
    if (fsSchedulerNodes.isEmpty()) {
      LOG.info("Nodes is empty, skip this assign around");
      return assigneds;
    }
    // Apps that have resource demands.
    TreeSet<FSAppAttempt> pendingForResourceApps =
            new TreeSet<FSAppAttempt>(policy.getComparator());
    readLock.lock();
    try {
      for (FSAppAttempt app : runnableApps) {  //所有的app running  or pending 队列 进行依次排序
        Resource pending = app.getAppAttemptResourceUsage().getPending();
        if (!pending.equals(Resources.none())) { //有资源需求的加入排序队列
          pendingForResourceApps.add(app);
        }
      }
    } finally {
      readLock.unlock();
    }

    int count = 0; //每个node 分配container计数
    Set<String> repeatApp = new HashSet<>(); //定义去重集合
    for (FSSchedulerNode node : fsSchedulerNodes) {  //node 遍历
      count = 0;
      for (FSAppAttempt sched : pendingForResourceApps) {  //app遍历
        // One node just allocate for one app once
        if (repeatApp.contains(sched.getId())) {  //去重
          continue;
        }
        if (SchedulerAppUtils.isPlaceBlacklisted(sched, node, LOG)) { //判断app有没有在node黑名单里
          continue;
        }
        if (node.getReservedContainer() == null
            && Resources.fitsIn(minimumAllocation, node.getAvailableResource())) { //判断node上还有没有资源
          assigned = sched.assignContainer(node); //具体分配container方法
          if (!assigned.equals(Resources.none())) {//给container 在node上分配到了资源
            count++;
            repeatApp.add(sched.getId());
            assigneds.add(assigned);
            if (LOG.isDebugEnabled()) {
              LOG.debug("Assigned container in queue:" + getName() + " " +
                      "container:" + assigned);
            }
          }
        }
        if (count >= maxNodeContainerAssign) { //node 分配的数量 超出最大的配置数 跳出 给下一node 分配
          break;
        }
      }
    }
    return assigneds;
  }


经过几次修正修改如下(第二版):

  @Override
  public int assignContainers(List<FSSchedulerNode> nodes) {
    int result = 0;
    getMetrics().assignCount.incr();
    Resource assigned = Resources.none();
    ArrayList<FSSchedulerNode> fsSchedulerNodes = new ArrayList<>();
    long start = System.currentTimeMillis();
    for (FSSchedulerNode node : nodes) {
      if (assignContainerPreCheck(node)) {
        fsSchedulerNodes.add(node);
      }
    }
    long preCheckTime = System.currentTimeMillis();
    getMetrics().preCheckTime.incr((preCheckTime - start));

    if (fsSchedulerNodes.isEmpty()) {
      LOG.info("Nodes is empty, skip this assign around");
      return result;
    }
    long runAppSortStart = System.currentTimeMillis();
    // Apps that have resource demands.
    TreeSet<FSAppAttempt> pendingForResourceApps =
            new TreeSet<FSAppAttempt>(policy.getComparator());
    readLock.lock();
    以上是关于hadoop2.9.0之前的版本yarn RM fairScheduler调度性能优化的主要内容,如果未能解决你的问题,请参考以下文章

MapReduce程序——WordCount(Windows_Eclipse + Ubuntu14.04_Hadoop2.9.0)

开发人员学Linux(14):CentOS7安装配置大数据平台Hadoop2.9.0

Kafka:ZK+Kafka+Spark Streaming集群环境搭建针对hadoop2.9.0启动DataManager失败问题

一个系列搞懂YARN——Yarn架构

对Hadoop2.7.2文档的学习-Yarn部分RM Restart/RM HA/Timeline Server/NM Restart

1.1伪分布式安装