大数据技术之辅助排序和二次排序案例(GroupingComparator)

Posted Frankdeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据技术之辅助排序和二次排序案例(GroupingComparator)相关的知识,希望对你有一定的参考价值。

辅助排序和二次排序案例(GroupingComparator)

1.需求

有如下订单数据

订单id

商品id

成交金额

0000001

Pdt_01

222.8

0000001

Pdt_05

25.8

0000002

Pdt_03

522.8

0000002

Pdt_04

122.4

0000002

Pdt_05

722.4

0000003

Pdt_01

222.8

0000003

Pdt_02

33.8

现在需要求出每一个订单中最贵的商品。

2.数据准备

GroupingComparator.txt

   Pdt_01    222.8
   Pdt_05    722.4
   Pdt_05    25.8
   Pdt_01    222.8
   Pdt_01    33.8
   Pdt_03    522.8
   Pdt_04    122.4

输出数据预期:

3    222.8
part-r-00000.txt
2    722.4
part-r-00001.txt
1    222.8
part-r-00002.txt

3.分析

(1)利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce。

(2)在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值。

 

4.实现

定义订单信息OrderBean

package com.xyg.mapreduce.order;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

public class OrderBean implements WritableComparable<OrderBean> {

    private int order_id; // 订单id号
    private double price; // 价格

    public OrderBean() {
        super();
    }

    public OrderBean(int order_id, double price) {
        super();
        this.order_id = order_id;
        this.price = price;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(order_id);
        out.writeDouble(price);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        order_id = in.readInt();
        price = in.readDouble();
    }

    @Override
    public String toString() {
        return order_id + "\\t" + price;
    }

    public int getOrder_id() {
        return order_id;
    }

    public void setOrder_id(int order_id) {
        this.order_id = order_id;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    // 二次排序
    @Override
    public int compareTo(OrderBean o) {

        int result = order_id > o.getOrder_id() ? 1 : -1;

        if (order_id > o.getOrder_id()) {
            result = 1;
        } else if (order_id < o.getOrder_id()) {
            result = -1;
        } else {
            // 价格倒序排序
            result = price > o.getPrice() ? -1 : 1;
        }

        return result;
    }
}

编写OrderSortMapper处理流程

package com.xyg.mapreduce.order;
import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> { OrderBean k = new OrderBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 截取 String[] fields = line.split("\\t"); // 3 封装对象 k.setOrder_id(Integer.parseInt(fields[0])); k.setPrice(Double.parseDouble(fields[2])); // 4 写出 context.write(k, NullWritable.get()); } }

编写OrderSortReducer处理流程

package com.xyg.mapreduce.order;
import java.io.IOException; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Reducer; public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> { @Override protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } }

编写OrderSortDriver处理流程

package com.xyg.mapreduce.order;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OrderDriver {

    public static void main(String[] args) throws Exception, IOException {

        // 1 获取配置信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 设置jar包加载路径
        job.setJarByClass(OrderDriver.class);

        // 3 加载map/reduce类
        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);

        // 4 设置map输出数据key和value类型
        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);

        // 5 设置最终输出数据的key和value类型
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        // 6 设置输入数据和输出数据路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 10 设置reduce端的分组
        job.setGroupingComparatorClass(OrderGroupingComparator.class);

        // 7 设置分区
        job.setPartitionerClass(OrderPartitioner.class);

        // 8 设置reduce个数
        job.setNumReduceTasks(3);

        // 9 提交
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

OrderSortDriver

编写OrderSortPartitioner处理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Partitioner; public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> { @Override public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) { return (key.getOrder_id() & Integer.MAX_VALUE) % numReduceTasks; } }

编写OrderSortGroupingComparator处理流程

package com.xyg.mapreduce.order;
import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; public class OrderGroupingComparator extends WritableComparator { protected OrderGroupingComparator() { super(OrderBean.class, true); } @SuppressWarnings("rawtypes") @Override public int compare(WritableComparable a, WritableComparable b) { OrderBean aBean = (OrderBean) a; OrderBean bBean = (OrderBean) b; int result; if (aBean.getOrder_id() > bBean.getOrder_id()) { result = 1; } else if (aBean.getOrder_id() < bBean.getOrder_id()) { result = -1; } else { result = 0; } return result; } }

以上是关于大数据技术之辅助排序和二次排序案例(GroupingComparator)的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop---mapreduce排序和二次排序以及全排序

大数据之Hadoop(MapReduce):shuffle之GroupingComparator分组(辅助排序)

MapReduce排序之 二次排序

hadoop MapReduce之辅助排序

大数据之Hadoop(MapReduce):WritableComparable排序案例实操(全排序)

大数据之Hadoop(MapReduce):WritableComparable排序案例实操(区内排序)