大数据技术之找博客共同好友案例

Posted Frankdeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据技术之找博客共同好友案例相关的知识,希望对你有一定的参考价值。

 7.9 找博客共同好友案例

1需求:

以下是博客的好友列表数据,冒号前是一个用户,冒号后是该用户的所有好友(数据中的好友关系是单向的)

技术分享图片
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J



多对多的关系
数据库:学生       课程        成绩表    
学生表和课程表的自然连接

A 1  100  
A 2  90

A : B
A : C
B : C



A    I,K,C,B,G,F,H,O,D,
B    A,F,J,E,
C    A,B
D    A,B


A-B  C,D
friends.txt

求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?

2)需求分析:

求出AB、C….等是好友

第一次输出结果

A    I,K,C,B,G,F,H,O,D,
B    A,F,J,E,
C    A,E,B,H,F,G,K,
D    G,C,K,A,L,F,E,H,
E    G,M,L,H,A,F,B,D,
F    L,M,D,C,G,A,
G    M,
H    O,
I    O,C,
J    O,
K    B,
L    D,E,
M    E,F,
O    A,H,I,J,F,

第二次输出结果

技术分享图片
A-B    E C 
A-C    D F 
A-D    E F 
A-E    D B C 
A-F    O B C D E 
A-G    F E C D 
A-H    E C D O 
A-I    O 
A-J    O B 
A-K    D C 
A-L    F E D 
A-M    E F 
B-C    A 
B-D    A E 
B-E    C 
B-F    E A C 
B-G    C E A 
B-H    A E C 
B-I    A 
B-K    C A 
B-L    E 
B-M    E 
B-O    A 
C-D    A F 
C-E    D 
C-F    D A 
C-G    D F A 
C-H    D A 
C-I    A 
C-K    A D 
C-L    D F 
C-M    F 
C-O    I A 
D-E    L 
D-F    A E 
D-G    E A F 
D-H    A E 
D-I    A 
D-K    A 
D-L    E F 
D-M    F E 
D-O    A 
E-F    D M C B 
E-G    C D 
E-H    C D 
E-J    B 
E-K    C D 
E-L    D 
F-G    D C A E 
F-H    A D O E C 
F-I    O A 
F-J    B O 
F-K    D C A 
F-L    E D 
F-M    E 
F-O    A 
G-H    D C E A 
G-I    A 
G-K    D A C 
G-L    D F E 
G-M    E F 
G-O    A 
H-I    O A 
H-J    O 
H-K    A C D 
H-L    D E 
H-M    E 
H-O    A 
I-J    O 
I-K    A 
I-O    A 
K-L    D 
K-O    A 
L-M    E F
View Code

3)代码实现:

1)第一次Mapper 

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class OneShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
    
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        // 1 获取一行 A:B,C,D,F,E,O
        String line = value.toString();
        
        // 2 切割
        String[] fileds = line.split(":");
        
        // 3 获取person和好友
        String person = fileds[0];
        String[] friends = fileds[1].split(",");
        
        // 4写出去
        for(String friend: friends){
            // 输出 <好友,人>
            context.write(new Text(friend), new Text(person));
        }
    }
}

(2)第一次Reducer 

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class OneShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
    
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        
        StringBuffer sb = new StringBuffer();
        //1 拼接
        for(Text person: values){
            sb.append(person).append(",");
        }
        
        //2 写出
        context.write(key, new Text(sb.toString()));
    }
}

(3)第一次Driver 

package com.xyg.mapreduce.friends;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OneShareFriendsDriver {

    public static void main(String[] args) throws Exception {
        // 1 获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        
        // 2 指定jar包运行的路径
        job.setJarByClass(OneShareFriendsDriver.class);

        // 3 指定map/reduce使用的类
        job.setMapperClass(OneShareFriendsMapper.class);
        job.setReducerClass(OneShareFriendsReducer.class);
        
        // 4 指定map输出的数据类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        
        // 5 指定最终输出的数据类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        // 6 指定job的输入原始所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 提交
        boolean result = job.waitForCompletion(true);
        
        System.exit(result?1:0);
    }
}

(4)第二次Mapper 

package com.xyg.mapreduce.friends;
import java.io.IOException;
import java.util.Arrays;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class TwoShareFriendsMapper extends Mapper<LongWritable, Text, Text, Text>{
    
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // A I,K,C,B,G,F,H,O,D,
        // 友 人,人,人
        String line = value.toString();
        String[] friend_persons = line.split("	");

        String friend = friend_persons[0];
        String[] persons = friend_persons[1].split(",");

        Arrays.sort(persons);

        for (int i = 0; i < persons.length - 1; i++) {
            
            for (int j = i + 1; j < persons.length; j++) {
                // 发出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去
                context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend));
            }
        }
    }
}

(5)第二次Reducer 

package com.xyg.mapreduce.friends;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class TwoShareFriendsReducer extends Reducer<Text, Text, Text, Text>{
    
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        
        StringBuffer sb = new StringBuffer();

        for (Text friend : values) {
            sb.append(friend).append(" ");
        }
        
        context.write(key, new Text(sb.toString()));
    }
}

(6)第二次Driver 

package com.xyg.mapreduce.friends;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TwoShareFriendsDriver {

    public static void main(String[] args) throws Exception {
        // 1 获取job对象
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        
        // 2 指定jar包运行的路径
        job.setJarByClass(TwoShareFriendsDriver.class);

        // 3 指定map/reduce使用的类
        job.setMapperClass(TwoShareFriendsMapper.class);
        job.setReducerClass(TwoShareFriendsReducer.class);
        
        // 4 指定map输出的数据类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        
        // 5 指定最终输出的数据类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        // 6 指定job的输入原始所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 提交
        boolean result = job.waitForCompletion(true);
        
        System.exit(result?1:0);
    }
}

 

 

 

以上是关于大数据技术之找博客共同好友案例的主要内容,如果未能解决你的问题,请参考以下文章

零基础学习java------22----------社交用户分析案例,反射(概念,获取配置文件的3种方式)

大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化(重中之重)+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客

Scala学习-函数式编程,计算两个人的共同好友

[大数据项目]-0010-基于大数据技术推荐系统算法案例实战视频教

24.永久删除Topic—Kafka

第3节 mapreduce高级:23课程大纲&共同好友求取步骤二