Hadoop_21_编写MapReduce程序实现Join功能
Posted QueryMarsBo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop_21_编写MapReduce程序实现Join功能相关的知识,希望对你有一定的参考价值。
1.1.hadoop的序列化格式
序列化和反序列化就是结构化对象和字节流之间的转换,主要用在内部进程的通讯和持久化存储方面
2.reduce端join算法实现
1.需求:
假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现以下SQL查询运算:
select a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id
2.实现机制:
通过将关联的条件pid作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同
一个reducetask,在reduce中进行数据的串联
3.代码实现:
package cn.bigdata.mr.rjoin; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; public class InfoBean implements Writable { private int order_id; private String dateString; private String p_id; private int amount; private String pname; private int category_id; private float price; // flag=0表示这个对象是封装订单表记录 // flag=1表示这个对象是封装产品信息记录 private String flag; public InfoBean() { } public void set(int order_id, String dateString, String p_id, int amount, String pname, int category_id, float price, String flag) { this.order_id = order_id; this.dateString = dateString; this.p_id = p_id; this.amount = amount; this.pname = pname; this.category_id = category_id; this.price = price; this.flag = flag; } public int getOrder_id() { return order_id; } public void setOrder_id(int order_id) { this.order_id = order_id; } public String getDateString() { return dateString; } public void setDateString(String dateString) { this.dateString = dateString; } public String getP_id() { return p_id; } public void setP_id(String p_id) { this.p_id = p_id; } public int getAmount() { return amount; } public void setAmount(int amount) { this.amount = amount; } public String getPname() { return pname; } public void setPname(String pname) { this.pname = pname; } public int getCategory_id() { return category_id; } public void setCategory_id(int category_id) { this.category_id = category_id; } public float getPrice() { return price; } public void setPrice(float price) { this.price = price; } public String getFlag() { return flag; } public void setFlag(String flag) { this.flag = flag; } /** * private int order_id; private String dateString; private int p_id; * private int amount; private String pname; private int category_id; * private float price; */ @Override public void write(DataOutput out) throws IOException { out.writeInt(order_id); out.writeUTF(dateString); out.writeUTF(p_id); out.writeInt(amount); out.writeUTF(pname); out.writeInt(category_id); out.writeFloat(price); out.writeUTF(flag); } @Override public void readFields(DataInput in) throws IOException { this.order_id = in.readInt(); this.dateString = in.readUTF(); this.p_id = in.readUTF(); this.amount = in.readInt(); this.pname = in.readUTF(); this.category_id = in.readInt(); this.price = in.readFloat(); this.flag = in.readUTF(); } @Override public String toString() { return "order_id=" + order_id + ", dateString=" + dateString + ", p_id=" + p_id + ", amount=" + amount + ", pname=" + pname + ", category_id=" + category_id + ", price=" + price ; } }
package cn.bigdata.mr.rjoin; import java.io.IOException; import java.util.ArrayList; import org.apache.commons.beanutils.BeanUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 订单表和商品表合到一起 order.txt(订单id, 日期, 商品编号, 数量) 1001 20150710 P0001 2 1002 20150710 P0001 3 1002 20150710 P0002 3 1003 20150710 P0003 3 product.txt(商品编号, 商品名字, 价格, 数量) P0001 小米5 1001 2 P0002 锤子T1 1000 3 P0003 锤子 1002 4 */ public class RJoin { static class RJoinMapper extends Mapper<LongWritable, Text, Text, InfoBean> { InfoBean bean = new InfoBean(); Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); FileSplit inputSplit = (FileSplit) context.getInputSplit(); String name = inputSplit.getPath().getName(); System.out.println("kkkkkkkkkkkkkkkkkkkkkk"+name); // 通过文件名判断是哪种数据 String pid = ""; if (name.startsWith("order")) { String[] fields = line.split(","); // id date pid amount pid = fields[2]; bean.set(Integer.parseInt(fields[0]), fields[1], pid, Integer.parseInt(fields[3]), "", 0, 0, "0"); } else { String[] fields = line.split(","); // id pname category_id price pid = fields[0]; bean.set(0, "", pid, 0, fields[1], Integer.parseInt(fields[2]), Float.parseFloat(fields[3]), "1"); } k.set(pid); context.write(k, bean); } } static class RJoinReducer extends Reducer<Text, InfoBean, InfoBean, NullWritable> { @Override protected void reduce(Text pid, Iterable<InfoBean> beans, Context context) throws IOException, InterruptedException { InfoBean pdBean = new InfoBean(); ArrayList<InfoBean> orderBeans = new ArrayList<InfoBean>(); for (InfoBean bean : beans) { if ("1".equals(bean.getFlag())) { //产品的 try { BeanUtils.copyProperties(pdBean, bean); } catch (Exception e) { e.printStackTrace(); } } else { InfoBean odbean = new InfoBean(); try { BeanUtils.copyProperties(odbean, bean); orderBeans.add(odbean); } catch (Exception e) { e.printStackTrace(); } } } // 拼接两类数据形成最终结果 for (InfoBean bean : orderBeans) { bean.setPname(pdBean.getPname()); bean.setCategory_id(pdBean.getCategory_id()); bean.setPrice(pdBean.getPrice()); context.write(bean, NullWritable.get()); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("mapred.textoutputformat.separator", ","); Job job = Job.getInstance(conf); // 指定本程序的jar包所在的本地路径 // job.setJarByClass(RJoin.class); // job.setJar("c:/join.jar"); job.setJarByClass(RJoin.class); // 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(RJoinMapper.class); job.setReducerClass(RJoinReducer.class); // 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(InfoBean.class); // 指定最终输出的数据的kv类型 job.setOutputKeyClass(InfoBean.class); job.setOutputValueClass(NullWritable.class); // 指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); // 指定job的输出结果所在目录 FileOutputFormat.setOutputPath(job, new Path(args[1])); // 将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行 /* job.submit(); */ boolean res = job.waitForCompletion(true); System.exit(res ? 0 : 1); } }
运行结果:
order_id=1002, dateString=20150710, p_id=P0001, amount=3, pname=sss, category_id=1001, price=2.0
order_id=1001, dateString=20150710, p_id=P0001, amount=2, pname=sss, category_id=1001, price=2.0
order_id=1002, dateString=20150710, p_id=P0002, amount=3, pname=111, category_id=1000, price=3.0
order_id=1003, dateString=20150710, p_id=P0003, amount=3, pname=www, category_id=1002, price=4.0
以上是关于Hadoop_21_编写MapReduce程序实现Join功能的主要内容,如果未能解决你的问题,请参考以下文章
使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS
Hadoop--07---MapReduce_02----WordCount 案例实操
使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS