python 利用pybrain库实现的BP神经网络 算法 不会画收敛图 求助
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 利用pybrain库实现的BP神经网络 算法 不会画收敛图 求助相关的知识,希望对你有一定的参考价值。
参考技术A 这个神经网络只能处理分两类的的情况,这是由这个神经网络的结构决定了的。 如果想应付分多类的情况,必须对输出层作softmax处理。Python实现——二层BP神经网络
2019/4/20
二层BP神经网络
题目是关于在10*10的平面上投骰子并分辨点数的,可以到我的Github上看(英文的)
但是仍有部分在公式上的不明了,但是其运作方式还是很简单的,先简单解析我的代码
from createData import generate_data
是本次所解题目的训练集生成软件,generate_data(N)会返回两个数组,一个为N乘100的训练集及其对应的N乘1的结果,十分方便,需要的可以到我的Gidhub上找
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
由于本次想构建的是二层神经网络,因此需要两层的计算层,其中我将中间的隐藏层设置为5个神经元,而输出层的表示方法为0.1~0.6的离散数,而不是6个0或1元素的数组,因此输出层为1个神经元(而不是6个),这样经过矩阵运算后矩阵维度能够与结果相同。
def sigmoid(x):
return 1/(1+np.exp(-x))
本次使用的激活函数:sigmoid函数,特点为非线性(并不是条直线),区间在[0,1]上,且没有任何点导数为0(趋近于0的有),同时他的导数也非常简洁:
def dsigmoid(x):
return x*(1-x)
因此这一次选择使用这个激活函数。
生成数据:
X,Y=generate_data(50)
X=np.array(X)
Y=np.array(Y)
#shape of parameters
#X(50*100) Y(50*1)
#L0(100*5) L1(5*1)
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
要谨记转换两数据的形式(List/Array)
并且标记出来了X,Y,L0,L1,分别的维数方便查看,其中L0,L1的生成方式是产生了填满位于[-1,1]的元素的数组(应该是吧...)
主题训练过程:
for i in range(50000):
#forward
temp0=X
temp1=sigmoid(np.dot(temp0,L0))
temp2=sigmoid(np.dot(temp1,L1))
error2=Y-temp2
if (i%5000)==0:
print(np.mean(error2))
#backward
d2=error2*dsigmoid(temp2)
error1=d2.dot(L1.T)
d1=error1*dsigmoid(temp1)
L1+=temp1.T.dot(d2)
L0+=temp0.T.dot(d1)
整体而言得益于矩阵使得过程十分流畅,内容主要涉及到了不断的求偏导并运用链式法则不断"接近"结果与目标变量的偏导,先不赘述算法了。
最后的检验部分...应该也不用再讲什么了吧...
完整代码如下:
import numpy as np
from createData import generate_data
def sigmoid(x):
return 1/(1+np.exp(-x))
def dsigmoid(x):
return x*(1-x)
X,Y=generate_data(50)
X=np.array(X)
Y=np.array(Y)
#shape of parameters
#X(50*100) Y(50*1)
#L0(100*5) L1(5*1)
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
for i in range(50000):
#forward
temp0=X
temp1=sigmoid(np.dot(temp0,L0))
temp2=sigmoid(np.dot(temp1,L1))
error2=Y-temp2
if (i%5000)==0:
print(np.mean(error2))
#backward
d2=error2*dsigmoid(temp2)
error1=d2.dot(L1.T)
d1=error1*dsigmoid(temp1)
L1+=temp1.T.dot(d2)
L0+=temp0.T.dot(d1)
X1,Y1=generate_data(1)
X1=np.array(X1)
Y1=np.array(Y1)
t1=sigmoid(np.dot(X1,L0))
t2=sigmoid(np.dot(t1,L1))
print(t2)
print(Y1)
以上是关于python 利用pybrain库实现的BP神经网络 算法 不会画收敛图 求助的主要内容,如果未能解决你的问题,请参考以下文章
训练 LSTM 神经网络以预测 pybrain、python 中的时间序列
毕业设计/Matlab系列基于PCA和BP神经网络的人脸识别系统(基于AR人脸库)