已知,圆C:x2+y2-8x+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了已知,圆C:x2+y2-8x+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切相关的知识,希望对你有一定的参考价值。
已知,圆C:x2+y2-8x+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切 (2)当直线l与圆C相交于A,B两点,且|AB|=2根号2时,求直线l的方程。 谢谢
你的答案不对 不好意思
(x-4)²+y²=4
表示圆心为(4,0)半径为2的圆
根据题意
圆心到直线的距离为半径时相切
|4a+2a|/√(a²+1)=2
|3a|=√(a²+1)
9a²=a²+1
a²=1/8
a=±√2/4
(2)1/2|AB|=√2,半径为2
根据勾股定理,我们知道圆心到直线的距离为√2
所以有|4a+2a|/√(a²+1)=√2
36a²=2a²+2
17a²=1
a=±1/√17
直线为1/√17x+y+2/√17=0即x+√17y+2=0
或-1/√17x+y-2/√17=0即x-√17y+2=0
你说的哪一个不对?
你题目的数据准确吗? 参考技术A According to Xinhua News Agency Xinhua China Banking Regulatory Commission Chairman Liu pointed out 20,nike heels sandals, the banking financial institutions to strengthen the land reserve loan management,black heels, and control real estate development loan risk; the implementation of dynamic,jordan boots, differentiated management of individual mortgage policies strictly limit variety of names,nike heels, real estate and speculative; quarter of medium-sized banks to carry out real estate loans according to the pressure test. Banking Regulatory Commission Liu in 2010,dunk sb heels, a second briefing on economic and financial analysis of the situation that the banking financial institutions to effectively control the annual incremental credit, credit to grasp the rhythm,dunk heels, to optimize credit structure; implementation Scientific assessment and incentives; full implementation of the "three ways, a guide" ("Interim Measures on Management of fixed asset loans,cheap jordan heels," "working capital loan management approach,nike heels for women," "Personal Loans" and "the project finance guidelines"); accordance with the "per-packet Open,nike dunk heels, transaction verification,blue high heels, re-evaluation,nike jordan heels, rectification preservation "requirement,women jordan heels, a solid job of local government financing platform for credit risk management and control work; must be done before the end of the third quarter of accurate classification,Red high heels, set aside enough provisions, basically completed during the year write-off of bad debts , so that account sales,jordan heels shoes, storage case, right in, and continued attention to time,micheal jordan heels, in the preservation and recovery period. 参考技术B 这个题要自己想呀 参考技术C 我看楼上对的
codevs 1515:跳
题目描述 Description 邪教喜欢在各种各样空间内跳。 现在,邪教来到了一个二维平面。在这个平面内,如果邪教当前跳到了(x,y),那么他下一步可以选择跳到以下4个点:(x-1,y), (x+1,y), (x,y-1), (x,y+1)。 而每当邪教到达一个点,他需要耗费一些体力,假设到达(x,y)需要耗费的体力用C(x,y)表示。 对于C(x,y),有以下几个性质: 1、若x=0或者y=0,则C(x,y)=1。 2、若x>0且y>0,则C(x,y)=C(x,y-1)+C(x-1,y)。 3、若x<0且y<0,则C(x,y)=无穷大。 现在,邪教想知道从(0,0)出发到(N,M),最少花费多少体力(到达(0,0)点花费的体力也需要被算入)。 由于答案可能很大,只需要输出答案对10^9+7取模的结果。 输入描述 Input Description 读入两个整数N,M,表示邪教想到达的点。 输出描述 Output Description 输出仅一个整数,表示邪教需要花费的最小体力对10^9+7取模的结果。 样例输入 Sample Input 1 2 样例输出 Sample Output 6 数据范围及提示 Data Size & Hint 对于10%的数据,满足N, M<=20; 对于30%的数据,满足N, M<=100; 对于60%的数据,满足min(N,M)<=100; 对于100%的数据,满足0<=N, M<=10^12,N*M<=10^12。
芒果君:一天没学OI了,写篇博文收收心。这道题,乍一看,棋盘dp;再乍一看,啊,这不是大明湖畔的杨辉、三角,组合数学题。贪心不难想,长边沿着0行列走,短边深入内部。设长边为n,短边为m,最小体力为n+ΣC(i,n+i)i=0--->i=m. %mod。
难道这样就完了吗?不可能!辣么大的数据摆着呢。上面那个西格玛什么什么可以化成C(n+m+1,n),于是这道题变得更加玄学了。
正在翻题解的我突然看到了一个陌生的定理——lucas定理,用于大组合数求模,需要递归调用。(PS:我现在对递归有点害怕,因为上次调并查集的时候炸栈了QAQ)具体公式为lucas(n,m)=C(n%mod,m%mod)*lucas(n/mod,m/mod)
(其实我还有些不懂的地方,待补充)
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cmath> 5 #define ll long long 6 #define mod 1000000007 7 using namespace std; 8 ll n,m; 9 ll ksm(ll x,ll y) 10 { 11 ll ret=1; 12 while(y){ 13 if(y&1) ret=ret*x%mod; 14 y>>=1; 15 x=x*x%mod; 16 } 17 return ret; 18 } 19 ll C(ll x,ll y) 20 { 21 ll k1=1,k2=1; 22 for(int i=x-y+1;i<=x;++i) k1=k1*i%mod; 23 for(int i=1;i<=y;++i) k2=k2*i%mod; 24 return (k1*ksm(k2,mod-2))%mod; 25 } 26 ll lucas(ll x,ll y) 27 { 28 if(!y) return 1; 29 return C(x%mod,y%mod)*lucas(x/mod,y/mod)%mod; 30 } 31 int main() 32 { 33 scanf("%lld%lld",&n,&m); 34 printf("%lld",(max(n,m)+lucas(n+m+1,min(n,m)))%mod); 35 return 0; 36 }
以上是关于已知,圆C:x2+y2-8x+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切的主要内容,如果未能解决你的问题,请参考以下文章