Spark SQL

Posted scls

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark SQL相关的知识,希望对你有一定的参考价值。

一.Spark SQL概述

 1.Spark SQL的前生今世

Shark是一个为Spark设计的大规模数据仓库系统,它与Hive兼容。Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来。这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码使得Shark很难优化和维护,同时Shark依赖于Spark的版本。随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分析功能,我们发现Hive的MapReduce设计的框架限制了Shark的发展。在2014年7月1日的Spark Summit上,Databricks宣布终止对Shark的开发,将重点放到Spark SQL上。

 2.什么是Spark SQL

  •  Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。
  • 相比于Spark RDD API,Spark SQL包含了对结构化数据和在其上运算的更多信息,Spark SQL使用这些信息进行了额外的优化,使对结构化数据的操作更加高效和方便。

  • 有多种方式去使用Spark SQL,包括SQL、DataFrames API和Datasets API。但无论是哪种API或者是编程语言,它们都是基于同样的执行引擎,因此你可以在不同的API之间随意切换,它们各有各的特点,看你喜欢那种风格。

3.为什么要学习Spark SQL     

    1.Spark SQL与Hive比较

  • Hive是将Hive SQL转换成MapReduce然后提交到集群中去执行,大大简化了编写MapReduce程序的复杂性,但是MapReduce这种计算模型执行效率比较慢.
  • Spark SQL是将Spark SQL转换成RDD,然后提交到集群中去运行,执行效率非常快!

    2.Spark SQL的特性

  • 易整合    

    将sql查询与spark程序无缝混合,可以使用java、scala、python、R等语言的API操作。

  • 统一的数据访问

          以相同的方式连接到任何数据源。

  • 兼容Hive

          支持hiveSQL的语法。

  • 标准的数据连接

          可以使用行业标准的JDBC或ODBC连接。

二.DataFrame

 1.什么是DataFrame

  • DataFrame的前身是SchemaRDD,从Spark 1.3.0开始SchemaRDD更名为DataFrame。与SchemaRDD的主要区别是:DataFrame不再直接继承自RDD,而是自己实现了RDD的绝大多数功能。你仍旧可以在DataFrame上调用rdd方法将其转换为一个RDD。
  • 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化。DataFrame可以从很多数据源构建,比如:已经存在的RDD、结构化文件、外部数据库、Hive表。

  2.DataFrame与RDD的区别

  • RDD可看作是分布式的对象的集合,Spark并不知道对象的详细模式信息,DataFrame可看作是分布式的Row对象的集合,其提供了由列组成的详细模式信息,使得Spark SQL可以进行某些形式的执行优化。使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么,DataFrame多了数据的结构信息,即schema。这样看起来就像一张表了,DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where ...)。
  • DataFrame还引入了off-heap,意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作。

  • RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。

  • DataFrame这个高一层的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了,对开发者来说,易用性有了很大的提升。通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不高效,也可以运行的很快。

 3.DataFrame与RDD的优缺点

  • RDD的优缺点:

          优点:

       (1)编译时类型安全 
                编译时就能检查出类型错误

       (2)面向对象的编程风格 
                直接通过对象调用方法的形式来操作数据

          缺点:

       (1)序列化和反序列化的性能开销 
                无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化。

       (2)GC的性能开销 
                频繁的创建和销毁对象, 势必会增加GC

  • DataFrame的优缺点

              DataFrame通过引入schema和off-heap(不在堆里面的内存,指的是除了不在堆的内存,使用操作系统上的内存),解决了RDD的缺点, Spark通过schame就能够读懂数据, 因此在通信和IO时就               只需要序列化和反序列化数据, 而结构的部分就可以省略了;通过off-heap引入,可以快速的操作数据,避免大量的GC。但是却丢了RDD的优点,DataFrame不是类型安全的, API也不是面向对象               风格的。

 4.读取数据源创建DataFrame

   1.读取文本文件创建DataFrame

  在spark2.0版本之前,Spark SQLSQLContext是创建DataFrame和执行SQL的入口,可以利用hiveContext通过hive sql语句操作hive表数据,兼容hive操作,并且hiveContext继承自SQLContext。在   spark2.0之后,这些都统一于SparkSessionSparkSession 封装了 SparkContextSqlContext,通过SparkSession可以获取到SparkConetxt,SqlContext对象。

  技术分享图片

 (1)在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到hdfs上。person.txt内容为:

1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40  

    上传数据文件到HDFS上:hdfs dfs -put person.txt  /

(2)在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割

         先执行 spark-shell --master local[2]

        val lineRDD= sc.textFile("/person.txt").map(_.split(" "))

      技术分享图片

(3)定义case class(相当于表的schema)

 case class Person(id:Int, name:String, age:Int)

      技术分享图片

(4)将RDD和case class关联

    val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))

     技术分享图片

(5)将RDD转换成DataFrame

      val personDF = personRDD.toDF

     技术分享图片

(6)对DataFrame进行处理

     personDF.show

     技术分享图片

    personDF.printSchema

    技术分享图片

4.DataFrame常用操作

    1.DSL风格语法 

      DataFrame提供了一个领域特定语言(DSL)来操作结构化数据。

     下面是一些使用示例:

      (1)查看DataFrame中的内容,通过调用show方法

        personDF.show

       技术分享图片

     (2)查看DataFrame部分列中的内容   查看name字段的数据

       personDF.select(personDF.col("name")).show

       技术分享图片

      查看name字段的另一种写法

      personDF.select("name").show

     技术分享图片

    查看 name 和age字段数据

    personDF.select(col("name"), col("age")).show

    技术分享图片

(3)打印DataFrame的Schema信息

         personDF.printSchema

         技术分享图片

(4)查询所有的name和age,并将age+1

         personDF.select(col("id"), col("name"), col("age") + 1).show

          技术分享图片

      也可以这样:

       personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show

       技术分享图片

(5)过滤age大于等于25的,使用filter方法过滤

         personDF.filter(col("age") >= 25).show

        技术分享图片

(6)统计年龄大于30的人数

        personDF.filter(col("age")>30).count()

        技术分享图片

(7)按年龄进行分组并统计相同年龄的人数

         personDF.groupBy("age").count().show

         技术分享图片

 2.SQL 风格语法

 DataFrame的一个强大之处就是我们可以将它看作是一个关系型数据表,然后可以通过在程序中使用spark.sql() 来执行SQL语句查询,结果返回一个DataFrame。

如果想使用SQL风格的语法,需要将DataFrame注册成表,采用如下的方式:

personDF.registerTempTable("t_person")

(1)查询年龄最大的前两名

         spark.sql("select * from t_person order by age desc limit 2").show

          技术分享图片

(2)显示表的Schema信息

         spark.sql("desc t_person").show

         技术分享图片

(3)查询年龄大于30的人的信息

         spark.sql("select * from t_person where age > 30 ").show

         技术分享图片

5.DataSet

  • 什么是DataSet

         DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函          数)以及使用了Spark SQL优化的执行引擎。DataSet可以通过JVM的对象进行构建,可以用函数式的转换(map/flatmap/filter)进行多种操作。

  •  DataSet   DataFrame  RDD的区别

            假设RDD中的两行数据长这样:

1,   张三,    23
2,   李四,    35

 

           那么DataFrame中的数据长这样:

 

ID:String Name:String Age:int
1 张三 23
2 李四 35

           那么Dataset中的数据长这样:

 

 

value:String
1,   张三,    23
2,   李四,    35

DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。

       (1)DataSet可以在编译时检查类型

      (2)并且是面向对象的编程接口

相比DataFrame,Dataset提供了编译时类型检查,对于分布式程序来讲,提交一次作业太费劲了(要编译、打包、上传运行),到提交到集群运行时才发现错误,这会浪费大量的时间,这也是引           入Dataset的一个重要原因。

  • DataFrame和DataSet可以相互转化

      (1)DataFrame转为 DataSet

               df.as[ElementType] 这样可以把DataFrame转化为DataSet。

      (2)DataSet转为DataFrame

              ds.toDF() 这样可以把DataSet转化为DataFrame。

  • 创建DataSet

        (1)通过spark.createDataset创建

           技术分享图片

           技术分享图片

      (2)通toDS方法生成DataSet

         技术分享图片

   (1)通过DataFrame转化生成  使用as[类型]转换为DataSet

       技术分享图片

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

以上是关于Spark SQL的主要内容,如果未能解决你的问题,请参考以下文章

控制 spark-sql 和数据帧中的字段可空性

python+spark程序代码片段

Spark闭包与序列化

sql sql里面的代码片段

Microsoft SQL Server 代码片段收集

缺少 SQL SERVER 2014 代码片段