一文读懂大数据两大核心技术

Posted programmeryu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文读懂大数据两大核心技术相关的知识,希望对你有一定的参考价值。

今天小编给大家先分享一下大数据的两大核心技术,知己知彼才能百战不殆,学习大数据技术也是一样的道理,要先有一个清晰的了解,才能确保自己全身心的投入学习。

Hadoop是什么?

Hadoop在2006年开始成为雅虎项目,随后晋升为顶级Apache开源项目。它是一种通用的分布式系统基础架构,具有多个组件:Hadoop分布式文件系统(HDFS),它将文件以Hadoop本机格式存储并在集群中并行化; YARN,协调应用程序运行时的调度程序; MapReduce,这是实际并行处理数据的算法。Hadoop使用Java编程语言构建,其上的应用程序也可以使用其他语言编写。通过一个Thrift客户端,用户可以编写MapReduce或者Python代码。

 

  除了这些基本组件外,Hadoop还包括Sqoop,它将关系数据移入HDFS; Hive,一种类似SQL的接口,允许用户在HDFS上运行查询; Mahout,机器学习。除了将HDFS用于文件存储之外,Hadoop现在还可以配置使用S3 buckets或Azure blob作为输入。

  它可以通过Apache发行版开源,也可以通过Cloudera(规模和范围最大的Hadoop供应商),MapR或HortonWorks等厂商提供。

  Spark是什么?

  Spark是一个较新的项目,2012年诞生在加州大学伯克利分校的AMPLab。它也是一个顶级Apache项目,专注于在集群中并行处理数据,一大区别在于它在内存中运行。

  类似于Hadoop读取和写入文件到HDFS的概念,Spark使用RDD(弹性分布式数据集)处理RAM中的数据。Spark以独立模式运行,Hadoop集群可用作数据源,也可与Mesos一起运行。在后一种情况下,Mesos主站将取代Spark主站或YARN以进行调度。

 

  Spark是围绕Spark Core构建的,Spark Core是驱动调度,优化和RDD抽象的引擎,并将Spark连接到正确的文件系统(HDFS,S3,RDBM或Elasticsearch)。Spark Core上还运行了几个库,包括Spark SQL,允许用户在分布式数据集上运行类似SQL的命令,用于机器学习的MLLib,用于解决图形问题的GraphX以及允许输入连续流式日志数据的Streaming。

  Spark有几个API。原始界面是用Scala编写的,并且由于大量数据科学家的使用,还添加了Python和R接口。Java是编写Spark作业的另一种选择。

Databricks是由Spark创始人Matei Zaharia创立的公司,现在负责    Spark开发并为客户提供Spark分销。

Hadoopspark两个大数据的核心技术的基础讲解在此就顺应结束了,想要提升自己的技术,想要突破自己的技术领域,欢迎撩小编,已经为你准备好了全套的大数据学习资料!

以上是关于一文读懂大数据两大核心技术的主要内容,如果未能解决你的问题,请参考以下文章

一文读懂大数据环境下的数据仓库建设!

阿里 HBase 超详实践总结 | 一文读懂大数据时代的结构化存储

一文读懂大数据计算框架与平台

一文看懂大数据生态圈完整知识体系大数据技术及架构图解实战派

关于BI商业智能的“8大问”|一文读懂大数据BI

五分钟读懂大数据核心MapReduce架构及原理