matlab里矩阵的正交分解怎么表示

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matlab里矩阵的正交分解怎么表示相关的知识,希望对你有一定的参考价值。

正交分解(qr分解)
[q r]=qr(a)
[q r p]=qr(a)
①输入参数矩阵a不必是方阵
②输出参量用[q r]格式中,q为正交方阵,阶数等于a的行数和列数中较小者,满足
q’*q= I ,r为与a同维的上三角阵,满足q*r=a
③输出参量用[q r p]格式时,q为正交方阵,r为对角线元素绝对值递减的上三角阵,p为换位阵,满足a*p=q*r
正交方阵:满足A*A'=I的方阵A。
参考技术A 矩阵分解 (decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix)。
依使用目的的不同 ,可分为三种矩阵分解法:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分 解法 (Singular Value Decompostion)。
(1) 三角分解法
三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵 或是排列(permuted) 的上三角形矩阵 和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求 反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。
我们举以下二个矩阵为例:
利用三角分解法可将A和B二矩阵分别拆解为上下三角形矩阵

注意B分解的矩阵得到的第一个矩阵[LB]是排列的下三角形矩阵,如果第二、三列互换,则此变成完全的下 三角形矩阵。
以MATLAB函数计算上述的LU分解法,其语法为[L,U]=lu(A),其中L代表下三角形矩阵U代表上三角形矩阵。 我们来看一个例子。
>> A = [1 2 -1, -2 -5 3; -1 -3 0]; B=[1 3 2; -2 -6 1; 2 5 7];
>> [L1,U1] = lu(A); [L2,U2] = lu(B);
>> L1; U1
L1 = % 注意这个矩阵L1和之前的[LA]不相同
-0.5 1 0
1 0 0
0.5 1 1
U1 = % 注意这个矩阵U1和之前的[UA]不相同
-2 -5 3
0 -0.5 0.5
0 0 -2
>> L2; U2
L2 = % 注意这个矩阵L2和之前的[LB]不相同
-0.5 0 1
1 0 0
-1 1 0
U2 = % 注意这个矩阵U2和之前的[UB]不相同
-2 -6 1
0 -1 8
0 0 2.5
(2) QR分解法
QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵。正规正交矩阵Q满足条件,所以称为QR分解法与此正规正交矩阵的通用符号Q有关。
MATLAB以qr函数来执行QR分解法, 其语法为[Q,R]=qr(A),其中Q代表正规正交矩阵,而R代表上三角形矩 阵。此外,原矩阵A不必为正方矩阵;如果矩阵A大小为,则矩阵Q大小为,矩阵R大小为。
(3) 奇异值分解法
奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩。

奇异值分解(SVD)

参考技术A 奇异值分解(SVD)是一种矩阵因子分解方法。任意一个m*n的矩阵,都可以表示为三个矩阵的乘积(因子分解)的形式,分别是m阶正交矩阵、由降序排列的非负的对角线元素组成的m*n矩阵和n阶正交矩阵,称为该矩阵的奇异值分解。矩阵的奇异值分解一定存在,但不唯一。奇异值分解可以看作出矩阵数据压缩的一种方法。即用因子分解的方式近似地表示原始矩阵,这种矩阵在平方损失意义下的最优近似。

矩阵的奇异值分解是指,将一个非零的m*n实矩阵 ,表示为以下三个实矩阵乘积形式的运算,即进行矩阵的因子分解

其中U是m阶正交矩阵,V是n阶正交矩阵, 是由降序排列的非负的对角元素组成的 的矩形对角矩阵

称为矩阵的奇异值分解, 称为矩阵A的奇异值, 的列向量称为左奇异向量, 的列向量成为右奇异向量

紧凑奇异值分解是与原始矩阵等秩的奇异值分解,截断奇异值分解是比原始矩阵降低秩的奇异值分解。在实际应用中,常常需要对矩阵的数据进行压缩,将其近似表示,奇异值分解提供了一种方法。奇异值分解是在平方损失意义下对矩阵的最优近似。紧奇异值分解对应着无损压缩,截断奇异值分解对应着有损压缩

设有 实矩阵A,其秩为rank(A) = r, ,则称 为A的紧奇异值分解,即

其中 是 矩阵, 是 矩阵, 是r阶对角矩阵,矩阵 由完全奇异分解中的前r列,矩阵 由V的前r列,矩阵 由 的前r个对角线元素得到,紧奇分解的对角矩阵 的秩与原始矩阵A的秩相等

在矩阵的奇异值分解中,只取最大的k个奇异值(k < r,r为矩阵的秩)对应的部分,就得到矩阵的截断奇异值分解。实际应用中提到的矩阵的奇异值分解,通常指截断奇异值分解

设A为 实矩阵,其秩rank(A)=r,且, ,则称 为矩阵A的截断奇异值分解

其中 是 矩阵, 是n*k矩阵, 是k阶对角矩阵;矩阵 由完全奇异分解U的前k列,矩阵 由V的前k列,矩阵 由 的前k个对角线元素得到。对角矩阵 的秩比原始矩阵A的秩低。

从线性变换的角度理解奇异值分解, 矩阵A表示从n维空间 到m空间 的一个线性变换,

x和Ax分别表示各自空间的向量。线性变换可以分解为三个简单的变换:一个坐标系的旋转或反射变换、一个坐标轴的缩放变换、另一个坐标系的旋转或反射。

对矩阵A进行奇异值分解,得到 ,V和U都是正交矩阵,所以V的列向量 构成空间的一组标准正交基,表示 中的正交坐标系的旋转或反射;U的列向量 构成 空间的一组标准正交基,表示 中正交坐标系的旋转或反射; 的对角元素 是一组非负实数,表示 中原始正坐标系坐标轴的 倍的缩放变换。

任意一个向量 ,经过基于 的线性变换,等价于经过坐标系的旋转或反射变换 ,坐标轴的缩放变换 ,以及坐标轴的旋转或反射变换U,得到相框

矩阵A是 的正交实矩阵,则矩阵 是n阶实对称矩阵,因而 的特征值都是实数,并且存在一个n阶正实矩阵V实现 的对角化,使得 成立,其中 是n阶对角矩阵,其对角元素由 的特征值组成。

而且, 的特征值都是非负的。事实上,令 是 的一个特征值,x是对应的特征向量,则

于是

可以假设正交矩阵V的列排列使得对应的特征值形成降序排列。

计算特征值的平方根(实际上解释矩阵A的奇异值)

设矩阵A的秩是r,rank(A)=r,则矩阵 的秩也是r。由于 是对称矩阵,它的秩等于正的特征值的个数。

对应的



其中 为 的特征值对应的特征向量, 为0特征值对应的特征向量。


这就是矩阵A的奇异值分解中的n阶正交矩阵V



则 是个一个r阶对角矩阵,其对角线元素为按降序排列的正的 ,于是 矩形对角矩阵 可以表示为

这就是矩阵A的奇异值分解中的 矩阵对角矩阵

接着构造m阶正交实矩阵U


则有

的列向量构成正交基是因为

对 的非零空间的一组标准正交基 ,令

并令

以上是关于matlab里矩阵的正交分解怎么表示的主要内容,如果未能解决你的问题,请参考以下文章

奇异值分解(SVD)

奇异值分解

SVD奇异值分解

矩阵分解---QR正交分解,LU分解

奇异值分解的意义

机器学习中的矩阵方法03:QR 分解