SDP:MongoDB-Scala - data access and modeling

Posted 雪川大虫

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SDP:MongoDB-Scala - data access and modeling相关的知识,希望对你有一定的参考价值。

    MongoDB是一种文件型数据库,对数据格式没有硬性要求,所以可以实现灵活多变的数据存储和读取。MongoDB又是一种分布式数据库,与传统关系数据库不同的是,分布式数据库不支持table-join,所以在设计数据库表结构方面与关系数据库有很大的不同。分布式数据库有一套与传统观念不同的数据模式,在设计库表结构时必须从满足各种数据抽取的需要为主要目的。关系数据库设计要求遵循范式模式(normalization)库表结构,在抽取数据时再通过table-join联结关系表。因为分布式数据库不支持table-join,在读取跨表数据时就需要多次抽取,影响数据处理的效率。MongoDB作为文件型数据库最大的特点就是容许嵌入Document:我们可以把相关联的Document嵌入在另一个关联Document中,这样就可以一次性读取全部数据,实现反范式(denormalization)的数据模式了。这方面MongoDB比Cassandra更加优胜。MongoDB支持灵活多样的索引方式,使它成为提供高效数据读取的分布式数据库最佳选择。另外,MongoDB还通过提供sort、aggregation、map-reduce来支持丰富强大的大数据统计功能。

   在使用MongoDB前我们必须熟悉它的数据模式和设计理念:在大数据时代的今天,数据的产生和使用发生了质的变化,传统关系数据库数据模式已经无法满足现代信息系统的要求。比如,在设计个人信息表时要考虑有些人有两个地址,有些甚至没有地址,又有些有传真号,还有这个那个的其它特点等等。在关系数据库模式设计中我们必须作出取舍,牺牲一些属性。但MongoDB的文件类数据库特点容许不同的数据格式,能实现完整的数据采集与储存。下面是一个采购单的Document设计:

  val po1 = Document (
    "ponum" -> "po18012301",
    "vendor" -> "The smartphone compay",
    "podate" -> podate1,
    "remarks" -> "urgent, rush order",
    "handler" -> pic,
    "podtl" -> Seq(
      Document("item" -> "sony smartphone", "price" -> 2389.00, "qty" -> 1239, "packing" -> "standard"),
      Document("item" -> "ericson smartphone", "price" -> 897.00, "qty" -> 1000, "payterm" -> "30 days")
    )
  )

  val po2 = Document (
    "ponum" -> "po18022002",
    "vendor" -> "The Samsung compay",
    "podate" -> podate2,
    "podtl" -> Seq(
      Document("item" -> "samsung galaxy s8", "price" -> 2300.00, "qty" -> 100, "packing" -> "standard"),
      Document("item" -> "samsung galaxy s7", "price" -> 1897.00, "qty" -> 1000, "payterm" -> "30 days"),
      Document("item" -> "apple iphone7", "price" -> 6500.00, "qty" -> 100, "packing" -> "luxury")
    )
  )

po1和po2都在podtl键嵌入了多条采购项目Document。首先,po1与po2有结构上的不同:po1多出了remarks、handler这两个键。嵌入的Document各自也有不同的结构。在这个例子里我特别加了date、binary、array类型的使用示范:

  val ca = Calendar.getInstance()
  ca.set(2011,10,23)
  val podate1 = ca.getTime
  ca.set(2012,12,23)
  val podate2 = ca.getTime

  val pic = FileToByteArray("/users/tiger-macpro/sample.png",3 seconds)

MongoDB的Date是java.util.Date,可以用Calendar来操作。再看看下面类型转换中的数据类型对应: 

 

  case class PO (
                 ponum: String,
                 podate: java.util.Date,
                 vendor: String,
                 remarks: Option[String],
                 podtl: Option[BsonArray],
                 handler: Option[BsonBinary]
                 )
  def toPO(doc: Document): PO = {
      val ks = doc.keySet
      PO(
        ponum = doc.getString("ponum"),
        podate = doc.getDate("podate"),
        vendor = doc.getString("vendor"),
        remarks = {
          if (ks.contains("remarks"))
            Some(doc.getString("remarks"))
          else
            None
        },
        podtl = {
          if (ks.contains("podtl"))
            doc.get("podtl").asInstanceOf[Option[BsonArray]]
          else
            None
        },
        handler = {
          if (ks.contains("handler"))
            doc.get("handler").asInstanceOf[Option[BsonBinary]]
          else
            None
        }
      )
    }

   case class PODTL(
                   item: String,
                   price: Double,
                   qty: Int,
                   packing: Option[String],
                   payTerm: Option[String]
                   )
   def toPODTL(podtl: Document): PODTL = {
     val ks = podtl.keySet
     PODTL(
       item = podtl.getString("item"),
       price = podtl.getDouble("price"),
       qty = podtl.getInteger("qty"),
       packing = {
         if (ks.contains("packing"))
           Some(podtl.getString("packing"))
         else None
       },
       payTerm = {
         if(ks.contains("payterm"))
           Some(podtl.getString("payterm"))
         else None
       }
     )
   }

注意BsonBinary和BsonArray这两个类型和它们的使用方法。我们可以用嵌入Document的键作为查询条件:

   poCollection.find(equal("podtl.qty",100)).toFuture().onComplete {
    case Success(docs) => docs.map(toPO).foreach (showPO)
      println("-------------------------------")
    case Failure(e) => println(e.getMessage)
  }

我们可以用toPO和toPODTL把po,podtl对应到case class,然后用强类型方式来使用它们:

   def showPO(po: PO) = {
     println(s"po number: ${po.ponum}")
     println(s"po date: ${po.podate.toString}")
     println(s"vendor: ${po.vendor}")
     if (po.remarks != None)
       println(s"remarks: ${po.remarks.get}")
     po.podtl match {
       case Some(barr) =>
         val docs = barr.getValues.asScala.toList
         docs.map { dc =>
           toPODTL(dc.asInstanceOf[org.bson.BsonDocument])
         }.foreach { doc: PODTL =>
             print(s"==>Item: ${doc.item} ")
             print(s"price: ${doc.price} ")
             print(s"qty: ${doc.qty} ")
             doc.packing.foreach(pk => print(s"packing: ${pk} "))
             doc.payTerm.foreach(pt => print(s"payTerm: ${pt} "))
             println("")
           }
       case _ =>
     }

     po.handler match {
       case Some(bs) =>
         val fileName = s"/users/tiger-macpro/${po.ponum}.png"
         ByteArrayToFile(bs.getData,fileName)
         println(s"picture saved to ${fileName}")
       case None => println("no picture provided")
     }
   }
   poCollection.find(equal("podtl.qty",100)).toFuture().onComplete {
     case Success(docs) => docs.map(toPO).foreach (showPO)
       println("------------------------------")
     case Failure(e) => println(e.getMessage)
   }
   poCollection.find().toFuture().onComplete {
    case Success(docs) => docs.map(toPO).foreach (showPO)
      println("-------------------------------")
    case Failure(e) => println(e.getMessage)
  }

试运行显示结果如下:

po number: po18022002
po date: Wed Jan 23 11:57:50 HKT 2013
vendor: The Samsung compay
==>Item: samsung galaxy s8 price: 2300.0 qty: 100 packing: standard 
==>Item: samsung galaxy s7 price: 1897.0 qty: 1000 payTerm: 30 days 
==>Item: apple iphone7 price: 6500.0 qty: 100 packing: luxury 
no picture provided
-------------------------------
po number: po18012301
po date: Wed Nov 23 11:57:50 HKT 2011
vendor: The smartphone compay
remarks: urgent, rush order
==>Item: sony smartphone price: 2389.0 qty: 1239 packing: standard 
==>Item: ericson smartphone price: 897.0 qty: 1000 payTerm: 30 days 
picture saved to /users/tiger-macpro/po18012301.png
po number: po18022002
po date: Wed Jan 23 11:57:50 HKT 2013
vendor: The Samsung compay
==>Item: samsung galaxy s8 price: 2300.0 qty: 100 packing: standard 
==>Item: samsung galaxy s7 price: 1897.0 qty: 1000 payTerm: 30 days 
==>Item: apple iphone7 price: 6500.0 qty: 100 packing: luxury 
no picture provided
------------------------------

下面是本次示范的源代码:

build.sbt

name := "learn-mongo"

version := "0.1"

scalaVersion := "2.12.4"

libraryDependencies := Seq(
  "org.mongodb.scala" %% "mongo-scala-driver" % "2.2.1",
  "com.lightbend.akka" %% "akka-stream-alpakka-mongodb" % "0.17"
)

FileStreaming.scala

import java.nio.file.Paths

import akka.stream.{Materializer}
import akka.stream.scaladsl.{FileIO, StreamConverters}

import scala.concurrent.{Await}
import akka.util._
import scala.concurrent.duration._

object FileStreaming {
  def FileToByteBuffer(fileName: String, timeOut: FiniteDuration)(
    implicit mat: Materializer):ByteBuffer = {
    val fut = FileIO.fromPath(Paths.get(fileName)).runFold(ByteString()) { case (hd, bs) =>
      hd ++ bs
    }
    (Await.result(fut, timeOut)).toByteBuffer
  }

  def FileToByteArray(fileName: String, timeOut: FiniteDuration)(
    implicit mat: Materializer): Array[Byte] = {
    val fut = FileIO.fromPath(Paths.get(fileName)).runFold(ByteString()) { case (hd, bs) =>
      hd ++ bs
    }
    (Await.result(fut, timeOut)).toArray
  }

  def FileToInputStream(fileName: String, timeOut: FiniteDuration)(
    implicit mat: Materializer): InputStream = {
    val fut = FileIO.fromPath(Paths.get(fileName)).runFold(ByteString()) { case (hd, bs) =>
      hd ++ bs
    }
    val buf = (Await.result(fut, timeOut)).toArray
    new ByteArrayInputStream(buf)
  }

  def ByteBufferToFile(byteBuf: ByteBuffer, fileName: String)(
    implicit mat: Materializer) = {
    val ba = new Array[Byte](byteBuf.remaining())
    byteBuf.get(ba,0,ba.length)
    val baInput = new ByteArrayInputStream(ba)
    val source = StreamConverters.fromInputStream(() => baInput)  //ByteBufferInputStream(bytes))
    source.runWith(FileIO.toPath(Paths.get(fileName)))
  }

  def ByteArrayToFile(bytes: Array[Byte], fileName: String)(
    implicit mat: Materializer) = {
    val bb = ByteBuffer.wrap(bytes)
    val baInput = new ByteArrayInputStream(bytes)
    val source = StreamConverters.fromInputStream(() => baInput) //ByteBufferInputStream(bytes))
    source.runWith(FileIO.toPath(Paths.get(fileName)))
  }

  def InputStreamToFile(is: InputStream, fileName: String)(
    implicit mat: Materializer) = {
    val source = StreamConverters.fromInputStream(() => is)
    source.runWith(FileIO.toPath(Paths.get(fileName)))
  }
}

MongoScala103.scala

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import java.util.Calendar

import org.bson.BsonBinary

import scala.util._
import FileStreaming._

import scala.concurrent.duration._
import org.mongodb.scala._
import org.mongodb.scala.bson.{BsonArray, BsonDocument}

import scala.collection.JavaConverters._

import org.mongodb.scala.connection.ClusterSettings
import org.mongodb.scala.model.Filters._
object MongoScala103 extends App {
  import Helpers._

  val clusterSettings = ClusterSettings.builder()
    .hosts(List(new ServerAddress("localhost:27017")).asJava).build()
  val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build()
  val client = MongoClient(clientSettings)

  implicit val system = ActorSystem()
  implicit val mat = ActorMaterializer()
  implicit val ec = system.dispatcher


  val db: MongoDatabase = client.getDatabase("testdb")
  val poOrgCollection: MongoCollection[Document] = db.getCollection("po")
  poOrgCollection.drop.headResult()
  val poCollection: MongoCollection[Document] = db.getCollection("po")


  val ca = Calendar.getInstance()
  ca.set(2011,10,23)
  val podate1 = ca.getTime
  ca.set(2012,12,23)
  val podate2 = ca.getTime

  val pic = FileToByteArray("/users/tiger-macpro/sample.png",3 seconds)

  val po1 = Document (
    "ponum" -> "po18012301",
    "vendor" -> "The smartphone compay",
    "podate" -> podate1,
    "remarks" -> "urgent, rush order",
    "handler" -> pic,
    "podtl" -> Seq(
      Document("item" -> "sony smartphone", "price" -> 2389.00, "qty" -> 1239, "packing" -> "standard"),
      Document("item" -> "ericson smartphone", "price" -> 897.00, "qty" -> 1000, "payterm" -> "30 days")
    )
  )

  val po2 = Document (
    "ponum" -> "po18022002",
    "vendor" -> "The Samsung compay",
    "podate" -> podate2,
    "podtl" -> Seq(
      Document("item" -> "samsung galaxy s8", "price" -> 2300.00, "qty" -> 100, "packing" -> "standard"),
      Document("item" -> "samsung galaxy s7", "price" -> 1897.00, "qty" -> 1000, "payterm" -> "30 days"),
      Document("item" -> "apple iphone7", "price" -> 6500.00, "qty" -> 100, "packing" -> "luxury")
    )
  )


  poCollection.insertMany(Seq(po1,po2)).headResult()

  case class PO (
                 ponum: String,
                 podate: java.util.Date,
                 vendor: String,
                 remarks: Option[String],
                 podtl: Option[BsonArray],
                 handler: Option[BsonBinary]
                 )
  def toPO(doc: Document): PO = {
      val ks = doc.keySet
      PO(
        ponum = doc.getString("ponum"),
        podate = doc.getDate("podate"),
        vendor = doc.getString("vendor"),
        remarks = {
          if (ks.contains("remarks"))
            Some(doc.getString("remarks"))
          else
            None
        },
        podtl = {
          if (ks.contains("podtl"))
            doc.get("podtl").asInstanceOf[Option[BsonArray]]
          else
            None
        },
        handler = {
          if (ks.contains("handler"))
            doc.get("handler").asInstanceOf[Option[BsonBinary]]
          else
            None
        }
      )
    }

   case class PODTL(
                   item: String,
                   price: Double,
                   qty: Int,
                   packing: Option[String],
                   payTerm: Option[String]
                   )
   def toPODTL(podtl: Document): PODTL = {
     val ks = podtl.keySet
     PODTL(
       item = podtl.getString("item"),
       price = podtl.getDouble("price"),
       qty = podtl.getInteger("qty"),
       packing = {
         if (ks.contains("packing"))
           Some(podtl.getString("packing"))
         else None
       },
       payTerm = {
         if(ks.contains("payterm"))
           Some(podtl.getString("payterm"))
         else None
       }
     )
   }

   def showPO(po: PO) = {
     println(s"po number: ${po.ponum}")
     println(s"po date: ${po.podate.toString}")
     println(s"vendor: ${po.vendor}")
     if (po.remarks != None)
       println(s"remarks: ${po.remarks.get}")
     po.podtl match {
       case Some(barr) =>
         val docs = barr.getValues.asScala.toList
         docs.map { dc =>
           toPODTL(dc.asInstanceOf[org.bson.BsonDocument])
         }.foreach { doc: PODTL =>
             print(s"==>Item: ${doc.item} ")
             print(s"price: ${doc.price} ")
             print(s"qty: ${doc.qty} ")
             doc.packing.foreach(pk => print(s"packing: ${pk} "))
             doc.payTerm.foreach(pt => print(s"payTerm: ${pt} "))
             println("")
           }
       case _ =>
     }

     po.handler match {
       case Some(bs) =>
         val fileName = s"/users/tiger-macpro/${po.ponum}.png"
         ByteArrayToFile(bs.getData,fileName)
         println(s"picture saved to ${fileName}")
       case None => println("no picture provided")
     }

   }

   poCollection.find().toFuture().onComplete {
     case Success(docs) => docs.map(toPO).foreach (showPO)
       println("------------------------------")
     case Failure(e) => println(e.getMessage)
   }


   poCollection.find(equal("podtl.qty",100)).toFuture().onComplete {
    case Success(docs) => docs.map(toPO).foreach (showPO)
      println("-------------------------------")
    case Failure(e) => println(e.getMessage)
  }


  scala.io.StdIn.readLine()
  system.terminate()

}

 

以上是关于SDP:MongoDB-Scala - data access and modeling的主要内容,如果未能解决你的问题,请参考以下文章

SDP:Streaming-Data-Processor - Data Processing with Akka-Stream

如何在 Semantix 数据平台 (SDP) 中选择摄取频率?

关于SDP协议的一些经验教训

转:SDP介绍

无法设置远程提供 sdp:使用没有 SDES 加密的 SDP 调用

SDP协议基本分析(RTSPWebRTC使用)