SDP:文本式数据库-MongoDB-Scala基本操作

Posted 雪川大虫

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SDP:文本式数据库-MongoDB-Scala基本操作相关的知识,希望对你有一定的参考价值。

    MongoDB是一种文本式数据库。与传统的关系式数据库最大不同是MongoDB没有标准的格式要求,即没有schema,合适高效处理当今由互联网+商业产生的多元多态数据。MongoDB也是一种分布式数据库,充分具备大数据处理能力和高可用性。MongoDB提供了scala终端驱动mongo-scala-driver,我们就介绍一下MongoDB数据库和通过scala来进行数据操作编程。

   与关系数据库相似,MongoDB结构为Database->Collection->Document。Collection对应Table,Document对应Row。因为MongoDB没有schema,所以Collection中的Document可以是不同形状格式的。在用scala使用MongoDB之前必须先建立连接,scala-driver提供了多种连接方式:

  val client1 = MongoClient()
  val client2 = MongoClient("mongodb://localhost:27017")
  
  val clusterSettings = ClusterSettings.builder()
         .hosts(List(new ServerAddress("localhost:27017")).asJava).build()
  val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build()
  val client = MongoClient(clientSettings)

下面是一些对应的MongoClient构建函数:

  /**
   * Create a default MongoClient at localhost:27017
   *
   * @return MongoClient
   */
  def apply(): MongoClient = apply("mongodb://localhost:27017")

  /**
   * Create a MongoClient instance from a connection string uri
   *
   * @param uri the connection string
   * @return MongoClient
   */
  def apply(uri: String): MongoClient = MongoClient(uri, None)

  /**
   * Create a MongoClient instance from a connection string uri
   *
   * @param uri the connection string
   * @param mongoDriverInformation any driver information to associate with the MongoClient
   * @return MongoClient
   * @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections.
   */
  def apply(uri: String, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {...}
  /**
   * Create a MongoClient instance from the MongoClientSettings
   *
   * @param clientSettings MongoClientSettings to use for the MongoClient
   * @return MongoClient
   */
  def apply(clientSettings: MongoClientSettings): MongoClient = MongoClient(clientSettings, None)

  /**
   * Create a MongoClient instance from the MongoClientSettings
   *
   * @param clientSettings MongoClientSettings to use for the MongoClient
   * @param mongoDriverInformation any driver information to associate with the MongoClient
   * @return MongoClient
   * @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections.
   */
  def apply(clientSettings: MongoClientSettings, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {

与MongoDB建立连接后可用选定Database:

 val db = client.getDatabase("testdb")

由于没有格式限制,所以testdb不需要预先构建,像文件系统的directory一样,不存在时可以自动创建。同样,db内的collection也是可以自动创建的,因为不需要预先设定字段格式(no-schema):

val db: MongoDatabase = client.getDatabase("testdb")
val userCollection: MongoCollection[Document] = db.getCollection("users")

collection中Document类的构建函数如下: 

 /**
   * Create a new document from the elems
   * @param elems   the key/value pairs that make up the Document. This can be any valid `(String, BsonValue)` pair that can be
   *                transformed into a [[BsonElement]] via [[BsonMagnets.CanBeBsonElement]] implicits and any [[BsonTransformer]]s that
   *                are in scope.
   * @return        a new Document consisting key/value pairs given by `elems`.
   */
  def apply(elems: CanBeBsonElement*): Document = {
    val underlying = new BsonDocument()
    elems.foreach(elem => underlying.put(elem.key, elem.value))
    new Document(underlying)
  }

Document可以通过CanbeBsonElement构建。CanbeBsonElement是一种key/value结构:

 /**
   * Represents a single [[BsonElement]]
   *
   * This is essentially a `(String, BsonValue)` key value pair. Any pair of `(String, T)` where type `T` has a [[BsonTransformer]] in
   * scope into a [[BsonValue]] is also a valid pair.
   */
  sealed trait CanBeBsonElement {
    val bsonElement: BsonElement

    /**
     * The key of the [[BsonElement]]
     * @return the key
     */
    def key: String = bsonElement.getName

    /**
     * The value of the [[BsonElement]]
     * @return the BsonValue
     */
    def value: BsonValue = bsonElement.getValue
  }

  /**
   * Implicitly converts key/value tuple of type (String, T) into a `CanBeBsonElement`
   *
   * @param kv the key value pair
   * @param transformer the implicit [[BsonTransformer]] for the value
   * @tparam T the type of the value
   * @return a CanBeBsonElement representing the key/value pair
   */
  implicit def tupleToCanBeBsonElement[T](kv: (String, T))(implicit transformer: BsonTransformer[T]): CanBeBsonElement = {
    new CanBeBsonElement {
      override val bsonElement: BsonElement = BsonElement(kv._1, transformer(kv._2))
    }
  }

有了上面这个tupleToCanBeBsonElement隐式转换函数就可以用下面的方式构建Document了: 

  val doc: Document = Document("_id" -> 0, "name" -> "MongoDB", "type" -> "database",
    "count" -> 1, "info" -> Document("x" -> 203, "y" -> 102))

这种key/value关系对应了一般数据库表中的字段名称/字段值。下面我们尝试建两个不同格式的Document并把它们加入到同一个collection里:

  val alice = Document("_id" -> 1, "name" -> "alice wong", "age" -> 24)
  val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable")

  val addAlice: Observable[Completed] = userCollection.insertOne(alice)
  val addTiger: Observable[Completed] = userCollection.insertOne(tiger)

上面这个例子证明了MongoDB的no-schema特性。用insert方法加入数据返回结果是个Obervable类型。这个类型与Future很像:只是一种运算的描述,必须通过subscribe方法来实际运算获取结果:

   addAlice.subscribe(new Observer[Completed] {
    override def onComplete(): Unit = println("insert alice completed.")
    override def onNext(result: Completed): Unit = println("insert alice sucessful.")
    override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}")
  })

又或者转成Future后用Future方法如Await来运算:

  def headResult(observable: Observable[Completed]) = Await.result(observable.head(), 2 seconds)
  val r1 = headResult(addTiger)

Mongo-Scala提供了Observable到Future的转换函数:

   /**
     * Collects the [[Observable]] results and converts to a [[scala.concurrent.Future]].
     *
     * Automatically subscribes to the `Observable` and uses the [[collect]] method to aggregate the results.
     *
     * @note If the Observable is large then this will consume lots of memory!
     *       If the underlying Observable is infinite this Observable will never complete.
     * @return a future representation of the whole Observable
     */
    def toFuture(): Future[Seq[T]] = {
      val promise = Promise[Seq[T]]()
      collect().subscribe((l: Seq[T]) => promise.success(l), (t: Throwable) => promise.failure(t))
      promise.future
    }

    /**
     * Returns the head of the [[Observable]] in a [[scala.concurrent.Future]].
     *
     * @return the head result of the [[Observable]].
     */
    def head(): Future[T] = {
      import scala.concurrent.ExecutionContext.Implicits.global
      headOption().map {
        case Some(result) => result
        case None         => null.asInstanceOf[T] // scalastyle:ignore null
      }
    }

也可以用insertMany来成批加入:

  val peter = Document("_id" -> 3, "first" -> "peter", "age" -> "old")
  val chan = Document("last" -> "chan", "family" -> "chan‘s")
  val addMany = userCollection.insertMany(List(peter,chan))
  val r2 = headResult(addMany)

现在我们可以用count得出usersCollection中Document数量和用find把所有Document都印出来:

  userCollection.count.head.onComplete {
    case Success(c) => println(s"$c documents in users collection")
    case Failure(e) => println(s"count() error: ${e.getMessage}")
  }
  userCollection.find().toFuture().onComplete {
    case Success(users) => users.foreach(println)
    case Failure(e) => println(s"find error: ${e.getMessage}")
  }
  scala.io.StdIn.readLine()

显示结果:

insert alice sucessful.
insert alice completed.
4 documents in users collection
Document((_id,BsonInt32{value=1}), (name,BsonString{value=alice wong}), (age,BsonInt32{value=24}))
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437602}), (first,BsonString{value=tiger}), (last,BsonString{value=chan}), (name,BsonString{value=tiger chan}), (age,BsonString{value=unavailable}))
Document((_id,BsonInt32{value=3}), (first,BsonString{value=peter}), (age,BsonString{value=old}))
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437603}), (last,BsonString{value=chan}), (family,BsonString{value=chans}))

这个BsonString很碍眼,用隐式转换来把它转成String:

object Helpers {

  implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] {
    override val converter: (Document) => String = (doc) => doc.toJson
  }

  implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] {
    override val converter: (C) => String = (doc) => doc.toString
  }

  trait ImplicitObservable[C] {
    val observable: Observable[C]
    val converter: (C) => String

    def results(): Seq[C] = Await.result(observable.toFuture(), 10 seconds)
    def headResult() = Await.result(observable.head(), 10 seconds)
    def printResults(initial: String = ""): Unit = {
      if (initial.length > 0) print(initial)
      results().foreach(res => println(converter(res)))
    }
    def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}")
  }

}

现在再列印:

  userCollection.find().printResults("all documents:")

all documents:{ "_id" : 1, "name" : "alice wong", "age" : 24 }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : 3, "first" : "peter", "age" : "old" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan‘s" }

现在可读性强多了。find()无条件选出所有Document。MongoDB-Scala通过Filters对象提供了完整的查询条件构建函数如equal:

 /**
   * Creates a filter that matches all documents where the value of the field name equals the specified value. Note that this does
   * actually generate a `\$eq` operator, as the query language doesn‘t require it.
   *
   * A friendly alias for the `eq` method.
   *
   * @param fieldName the field name
   * @param value     the value
   * @tparam TItem  the value type
   * @return the filter
   * @see [[http://docs.mongodb.org/manual/reference/operator/query/eq \$eq]]
   */
  def equal[TItem](fieldName: String, value: TItem): Bson = eq(fieldName, value)

equal返回Bson,我们也可以把多个Bson组合起来形成一个更复杂的查询条件:

userCollection.find(and(gte("age",24),exists("name",true)))

好了,现在我们可以测试各种查询条件了:

  userCollection.find(notEqual("_id",3)).printResults("id != 3:")
  userCollection.find(equal("last", "chan")).printResults("last = chan:")
  userCollection.find(and(gte("age",24),exists("name",true))).printResults("age >= 24")
  userCollection.find(or(gte("age",24),equal("first","tiger"))).printResults("first = tiger")

显示结果:

id != 3:{ "_id" : 1, "name" : "alice wong", "age" : 24 }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan‘s" }
last = chan:{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan‘s" }
age >= 24{ "_id" : 1, "name" : "alice wong", "age" : 24 }
first = tiger{ "_id" : 1, "name" : "alice wong", "age" : 24 }
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }

下面是本次示范的源代码:

build.sbt

name := "learn-mongo"

version := "0.1"

scalaVersion := "2.12.4"

libraryDependencies := Seq(
    "org.mongodb.scala" %% "mongo-scala-driver" % "2.2.1",
    "com.lightbend.akka" %% "akka-stream-alpakka-mongodb" % "0.17"
)

MongoScala101.scala

import org.mongodb.scala._
import scala.collection.JavaConverters._
import org.mongodb.scala.connection.ClusterSettings
import scala.concurrent._
import scala.concurrent.duration._
import scala.util._
import org.mongodb.scala.model.Filters._
object MongoScala101 extends App {
  import scala.concurrent.ExecutionContext.Implicits.global
//  val client1 = MongoClient()
//  val client2 = MongoClient("mongodb://localhost:27017")

  val clusterSettings = ClusterSettings.builder()
         .hosts(List(new ServerAddress("localhost:27017")).asJava).build()
  val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build()
  val client = MongoClient(clientSettings)

  val db: MongoDatabase = client.getDatabase("testdb")
  val userCollection: MongoCollection[Document] = db.getCollection("users")
  val deleteAll = userCollection.deleteMany(notEqual("_id", 3))
  deleteAll.head.onComplete {
    case Success(c) => println(s"delete sucessful $c")
    case Failure(e) => println(s"delete error: ${e.getMessage}")
  }

  scala.io.StdIn.readLine()
  val delete3 = userCollection.deleteMany(equal("_id", 3))
  delete3.head.onComplete {
    case Success(c) => println(s"delete sucessful $c")
    case Failure(e) => println(s"delete error: ${e.getMessage}")
  }
  scala.io.StdIn.readLine()

  val doc: Document = Document("_id" -> 0, "name" -> "MongoDB", "type" -> "database",
    "count" -> 1, "info" -> Document("x" -> 203, "y" -> 102))

  val alice = Document("_id" -> 1, "name" -> "alice wong", "age" -> 24)
  val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable")

  val addAlice: Observable[Completed] = userCollection.insertOne(alice)
  val addTiger: Observable[Completed] = userCollection.insertOne(tiger)

  addAlice.subscribe(new Observer[Completed] {
    override def onComplete(): Unit = println("insert alice completed.")
    override def onNext(result: Completed): Unit = println("insert alice sucessful.")
    override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}")
  })

  def headResult(observable: Observable[Completed]) = Await.result(observable.head(), 2 seconds)
  val r1 = headResult(addTiger)

  val peter = Document("_id" -> 3, "first" -> "peter", "age" -> "old")
  val chan = Document("last" -> "chan", "family" -> "chan‘s")
  val addMany = userCollection.insertMany(List(peter,chan))
  val r2 = headResult(addMany)


  import Helpers._
  userCollection.count.head.onComplete {
    case Success(c) => println(s"$c documents in users collection")
    case Failure(e) => println(s"count() error: ${e.getMessage}")
  }
  userCollection.find().toFuture().onComplete {
    case Success(users) => users.foreach(println)
    case Failure(e) => println(s"find error: ${e.getMessage}")
  }
  scala.io.StdIn.readLine()


  userCollection.find().printResults("all documents:")
  userCollection.find(notEqual("_id",3)).printResults("id != 3:")
  userCollection.find(equal("last", "chan")).printResults("last = chan:")
  userCollection.find(and(gte("age",24),exists("name",true))).printResults("age >= 24")
  userCollection.find(or(gte("age",24),equal("first","tiger"))).printResults("first = tiger")



  client.close()

  println("end!!!")

}

object Helpers {

  implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] {
    override val converter: (Document) => String = (doc) => doc.toJson
  }

  implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] {
    override val converter: (C) => String = (doc) => doc.toString
  }

  trait ImplicitObservable[C] {
    val observable: Observable[C]
    val converter: (C) => String

    def results(): Seq[C] = Await.result(observable.toFuture(), 10 seconds)
    def headResult() = Await.result(observable.head(), 10 seconds)
    def printResults(initial: String = ""): Unit = {
      if (initial.length > 0) print(initial)
      results().foreach(res => println(converter(res)))
    }
    def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}")
  }

}

 

以上是关于SDP:文本式数据库-MongoDB-Scala基本操作的主要内容,如果未能解决你的问题,请参考以下文章

SDP(10):文本式大数据运算环境-MongoDB-Engine功能设计

数据释放空间价值|Whale 帷幄 SDP 定义空间数据未来式

SDP 协议分析

WebRTC源码-信令之六:SDP协议与协商流程

WebRTC源码-信令之六:SDP协议与协商流程

SDP:Streaming-Data-Processor - Data Processing with Akka-Stream