2018最新最全大数据技术、项目视频。整套视频,非那种淘宝杂七杂八网上能免费找到拼凑的乱八七糟的几年前的不成体系浪费咱们宝贵时间的垃圾,详细内容如下,需要的联系QQ:3164282908(加Q注明博客园)。
更有海量大数据技术视频、大数据项目视频,机器学习深度学习技术视频、项目视频。Python编程视频、Oracle数据库视频、Java培训视频高级架构师视频等等等。
[大数据项目]-0010-基于大数据技术推荐系统算法案例实战视频教 : 18.41GB
├──1.01_大数据应用案例.mp4 : 105.82MB
├──1.02_大数据技术框架.mp4 : 71.67MB
├──1.03_推荐系统的技术栈.mp4 : 123.96MB
├──1.04_课程的基础要求和安排.mp4 : 36.49MB
├──2.01_什么是推荐系统(处理).mp4 : 137.53MB
├──3.01_推荐系统的设计(1).mp4 : 133.11MB
├──3.01_推荐系统的设计.mp4 : 133.11MB
├──3.02_用户界面的重要性(1).mp4 : 177.22MB
├──3.02_用户界面的重要性.mp4 : 177.22MB
├──4.01_什么是lambda架构.mp4 : 95.72MB
├──4.02_Lambda架构之批处理层.mp4 : 204.94MB
├──4.03_Lambda架构之实时处理层.mp4 : 70.69MB
├──4.04_Lambda架构之服务层.mp4 : 62.54MB
├──5.01_什么是用户画像.mp4 : 64.05MB
├──5.02_用户画像的数学描述.mp4 : 131.28MB
├──5.03_用户画像系统流程.mp4 : 204.13MB
├──5.04_用户画像系统架构.mp4 : 46.13MB
├──5.05_用户标签使用案例.mp4 : 182.20MB
├──5.06_算法和模型的评价.mp4 : 99.62MB
├──5.07_SparkML代码实现.mp4 : 169.19MB
├──5.08_代码实例1之模型训练及参数设置-实践.mp4 : 393.22MB
├──5.09_代码实例1之参数设置及模型测试-实践.mp4 : 240.60MB
├──5.10_代码实例2之使用管道.mp4 : 46.97MB
├──5.11_代码实例2之使用管道-实践.mp4 : 446.03MB
├──5.12_代码实例3之模型调优.mp4 : 95.11MB
├──5.13_代码示例3之模型调优-实践.mp4 : 255.13MB
├──5.14_代码示例4之模型调优-实践.mp4 : 348.79MB
├──5.15_用户画像系统应用.mp4 : 142.97MB
├──6.01_推荐模型构建流程.mp4 : 68.58MB
├──6.02_推荐算法概述.mp4 : 116.86MB
├──6.03_基于协同过滤的推荐算法.mp4 : 135.58MB
├──6.04_相似度的计算.mp4 : 117.64MB
├──6.05_基于模型的方法.mp4 : 151.58MB
├──6.06_协同过滤的实现.mp4 : 116.96MB
├──6.07_推荐系统冷启动问题.mp4 : 82.55MB
├──6.08_推荐案例实践准备.mp4 : 59.68MB
├──6.09_推荐案例IDE环境配置-实践.mp4 : 145.43MB
├──07.01_Mahout概述.mp4 : 216.34MB
├──07.02_Mahout推荐系统组件.mp4 : 242.75MB
├──07.03_Mahout推荐系统评估.mp4 : 94.75MB
├──07.04_Mahout开发环境部署-实践.mp4 : 143.35MB
├──07.05_Mahout推荐实例1之偏好数组-实践.mp4 : 168.41MB
├──07.06_Mahout推荐实例2之数据模型-实践.mp4 : 170.41MB
├──07.07_Mahout推荐实例3之构建模型-实践.mp4 : 230.94MB
├──07.08_Mahout推荐实例4之模型评估1-实践.mp4 : 372.45MB
├──07.09_Mahout推荐实例5之模型评估2-实践.mp4 : 216.88MB
├──07.10_Mahout推荐实例6之电影推荐1-实践.mp4 : 252.46MB
├──07.11_Mahout推荐实例6之电影推荐2-实践.mp4 : 291.07MB
├──07.12_Mahout推荐实例6之电影推荐3-实践.mp4 : 297.78MB
├──07.13_Mahout推荐实例7之图书推荐1-实践.mp4 : 210.01MB
├──07.14_Mahout推荐实例7之图书推荐2-实践.mp4 : 212.19MB
├──07.15_Mahout推荐实例7之图书推荐3-实践.mp4 : 285.85MB
├──07.16_Mahout推荐系统实战-实践.mp4 : 304.11MB
├──8.01_Mahout推荐实战补充-实践.mp4 : 61.24MB
├──8.02_Spark MLlib概述.mp4 : 161.79MB
├──8.03_MLlib推荐算法介绍.mp4 : 92.35MB
├──8.04_MLlib推荐算法实战.mp4 : 90.33MB
├──8.05_MLlib推荐实例之定义解析函数-实践.mp4 : 188.43MB
├──8.06_MLlib推荐实例之探索DataFrame_实践.mp4 : 257.65MB
├──8.07_MLlib推荐实例之ALS模型推荐-实践.mp4 : 167.61MB
├──8.08_MLlib推荐实例之模型评估-实践.mp4 : 287.09MB
├──8.09_推荐实战之开发环境准备-实践.mp4 : 117.55MB
├──8.10_推荐实战之实现用户评分函数-实践.mp4 : 92.39MB
├──8.11推荐实战之实现计算RMSE函数-实践.mp4 : 60.54MB
├──8.12_推荐实战之参数设置及数据加载-实践.mp4 : 137.53MB
├──8.13_推荐实战之用户调查及数据拆分-实践.mp4 : 164.08MB
├──8.14_推荐实战之模型训练及评估-实践.mp4 : 200.26MB
├──8.15_推荐实战之个性化推荐-实践.mp4 : 116.71MB
├──8.16_推荐实战之测试部署-实践.mp4 : 290.57MB
├──9.01_推荐系统与Lambda架构.mp4 : 128.65MB
├──9.02_推荐系统数据收集背景.mp4 : 84.84MB
├──9.03_FlumeNG数据收集系统.mp4 : 186.78MB
├──9.04_Web日志数据采集Flume部署配置-实践.mp4 : 242.19MB
├──9.05_Web日志数据采集Flume运行测试-实践.mp4 : 280.33MB
├──9.06_Sqoop数据收集工具.mp4 : 170.18MB
├──9.07_Sqoop收集账户数据-实践.mp4 : 366.00MB
├──9.08_HDFS数据存储系统.mp4 : 166.95MB
├──9.09_上传知识库文档到HDFS.mp4 : 120.31MB
├──9.10_HBase数据库存储系统.mp4 : 274.80MB
├──9.11_加载并访问Hbase的评分数据-实践.mp4 : 451.25MB
├──9.12_推荐系统综合实战.mp4 : 34.90MB
├──9.13_推荐系统离线层实现-实践.mp4 : 389.05MB
├──9.14_推荐系统服务层实现-实践.mp4 : 178.71MB
├──9.15_推荐系统实时层实现-实践.mp4 : 287.16MB
├──课件文档代码 : 1.90GB
│├──mahout-recommendation.zip : 5.38MB
│├──spark-recommendation.zip : 3.38KB
│├──数据包.zip : 119.53MB
│├──第1讲 推荐系统与大数据的关系 : 2.76MB
││├──视频 : 0B
││└──课件 : 2.76MB
││ └──01-推荐系统与大数据.pptx : 2.76MB
│├──第2讲 认识推荐系统 : 0B
││└──视频 : 0B
│├──第3讲 推荐系统设计 : 3.43MB
││├──视频 : 0B
││└──课件 : 3.43MB
││ └──03-推荐系统设计.pptx : 3.43MB
│├──第4讲 大数据lambda架构 : 0B
││└──视频 : 0B
│├──第5讲 用户画像系统 : 4.24MB
││├──代码 : 5.40KB
│││├──SparkML-example1.scala : 1.33KB
│││├──SparkML-example2.scala : 1.35KB
│││├──SparkML-example3.scala : 1.86KB
│││└──SparkML-example4.scala : 876.00B
││├──数据 : 117.26KB
│││└──sample_linear_regression_data.txt : 117.26KB
││├──视频 : 0B
││└──课件 : 4.12MB
││ └──05-用户画像系统.pptx : 4.12MB
│├──第6讲 推荐算法及开发环境配置 : 13.33MB
││├──文档 : 246.65KB
│││└──推荐系统实战-实践指导2.pdf : 246.65KB
││├──视频 : 0B
││└──课件 : 13.09MB
││ ├──06-推荐案例实践准备.pptx : 1.91MB
││ └──06-推荐算法.pptx : 11.18MB
│├──第7讲 Mahout推荐算法实战 : 4.32MB
││├──代码 : 28.05KB
│││├──BookCrossing : 11.32KB
││││├──BXBooleanRecommender.java : 3.12KB
││││├──BXBooleanRecommenderBuilder.java : 492.00B
││││├──BXBooleanRecommenderEvaluator.java : 1.48KB
││││├──BXDataModel.java : 1.68KB
││││├──BXDataModelBuilder.java : 595.00B
││││├──BXRecommender.java : 2.71KB
││││├──BXRecommenderBuilder.java : 478.00B
││││└──BXRecommenderEvaluator.java : 832.00B
│││├──example : 7.03KB
││││├──CreateGenericDataModel.java : 1.22KB
││││├──CreatePreferenceArray.java : 686.00B
││││├──EvaluatorIntro.java : 2.09KB
││││├──IREvaluatorIntro.java : 1.90KB
││││└──RecommenderIntro.java : 1.15KB
│││├──MovieLens : 6.65KB
││││├──BatchItemSimilaritiesMovieLens.java : 1.81KB
││││├──MovieLensDataModel.java : 1.51KB
││││└──UserRecommenderMovieLens.java : 3.32KB
│││└──practice : 3.06KB
│││ └──mysqlDataMovieRecommend.java : 3.06KB
││├──文档 : 258.39KB
│││└──推荐系统实战-实践指导3.pdf : 258.39KB
││├──视频 : 0B
││└──课件 : 4.04MB
││ ├──07-Mahout推荐算法实战.pptx : 4.04MB
││ └──~$07-Mahout推荐算法实战.pptx : 165.00B
│├──第8讲 Spark推荐算法实战 : 2.48MB
││├──代码 : 9.11KB
│││├──ALS-examples.scala : 3.59KB
│││└──MovieLensALS.scala : 5.51KB
││├──文档 : 169.50KB
│││└──推荐系统实战-实践指导4.pdf : 169.50KB
││├──视频 : 0B
││└──课件 : 2.31MB
││ └──08-Spark推荐算法实战.pptx : 2.31MB
│├──第9讲 推荐系统与Lambda架构 : 9.27MB
││├──代码 : 21.15KB
│││├──hbase操作.txt : 801.00B
│││└──src : 20.37KB
│││ └──main : 20.37KB
│││ ├──java : 18.76KB
│││ │└──com : 18.76KB
│││ │ └──dylan : 18.76KB
│││ │ └──recom : 18.76KB
│││ │ ├──common : 3.48KB
│││ │ │├──Constants.java : 301.00B
│││ │ │├──ItemSimilarity.java : 1.17KB
│││ │ │└──RedisUtil.java : 2.02KB
│││ │ ├──offline : 9.35KB
│││ │ │├──GroupLensDataModel.java : 2.67KB
│││ │ │├──HDFSDataModel.java : 1.98KB
│││ │ │├──ItemsSimilarityTableRedisWriter.java : 1.41KB
│││ │ │├──SimilarityTablesGenerator.java : 1.70KB
│││ │ │└──UserItemSimilarityTableRedisWriter.java : 1.59KB
│││ │ ├──realtime : 2.47KB
│││ │ │├──KafkaProducer.java : 1.92KB
│││ │ │└──NewClickEvent.java : 570.00B
│││ │ └──webservice : 3.46KB
│││ │ ├──ItemBasedRecoResult.java : 1.82KB
│││ │ ├──RecommendedItems.java : 359.00B
│││ │ └──RecoServer.java : 1.28KB
│││ └──scala : 1.61KB
│││ └──com : 1.61KB
│││ └──dylan : 1.61KB
│││ └──recom : 1.61KB
│││ └──realtime : 1.61KB
│││ └──RealtimeRecommender.scala : 1.61KB
││├──文档 : 408.25KB
│││└──推荐系统实战第9讲-实践指导5.pdf : 408.25KB
││├──视频 : 0B
││└──课件 : 8.85MB
││ ├──0901-推荐系统与Lambda架构.pptx : 1.72MB
││ ├──0902-分布式数据收集.pptx : 2.33MB
││ ├──0903-分布式数据存储.pptx : 2.99MB
││ └──0904-推荐系统实战.pptx : 1.81MB
│└──软件包 : 1.74GB
│ ├──安装包 : 616.27MB
│ │├──hadoop-2.6.5.tar.gz : 190.39MB
│ │├──jdk-7u71-linux-x64.gz : 135.63MB
│ │├──kafka_2.10-0.8.2.2.tgz : 15.42MB
│ │├──redis-3.0.7.tar.gz : 1.31MB
│ │├──spark-1.6.2-bin-hadoop2.6.tgz : 265.18MB
│ │└──tcl8.6.1-src.tar.gz : 8.35MB
│ └──虚拟机 : 1.14GB
│ └──master.rar : 1.14GB
└──课件文档代码.rar : 1.90GB