数据处理简单对比:Excel,SQL,Python

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据处理简单对比:Excel,SQL,Python相关的知识,希望对你有一定的参考价值。

参考技术A

无论是什么工具,做数据分析的时候一定会涉及到两类工作:

这篇文章简单对比一下Excel、SQL和Python在这两类任务上的实现过程,从而对比其异同。

如图所示,所涉及的共有三个表:

可以看到,score表通过sno和student表连接、通过cno和course表连接。

另外,这张截图截自Excel,主要是为了方便后面Excel部分的讨论。

现在,我想要合并三张表,得到新表merge_table,表包含的列一次为:sno,cno,degree,sname,cname。

即,新表中包含score表的所有列,student表的sname列,以及course表的cname列。

为了讨论方便,先上结果:

首先,在 A17:E17 单元格创建所需列名,然后通过简单复制粘贴得到 A18:C28 这三列的数据。

D、E列的数据可以通过以下两种方法实现:

两种方法实现逻辑和结果都一样,但前者调用的时候比后者稍复杂。为了说明,D列数据的提取我使用了方法1,E列数据的提取我使用了方法2。

D列:

首先在 D18 单元格输入以下函数(函数中的单元格所对应的数据请看图01)

接着下拉函数至 D28 。

E列:

在 E18 单元格输入以下函数(函数中的单元格所对应的数据请看图01)

接着下拉函数至 E28 。

注意,如果要提取某个表中的多个列的数据,比如除了sname,我还想得到ssex、sbirthday和class的数据,由于这些列是一同储存在student表中的,用 VLOOPKUP() 显然更高效。

如果想要加快效率,还可以在原student表上新增一行,用数字x来表示第x列,然后在调用 VLOOPKUP() 时,直接把第三个参数指向这一行。

在合并关联表上,SQL非常便捷。实现的语句有两个(先创建或者导入原数据表):

两种方法返回的结果相同,结果如下:

我用的mysql,不知道为什么合并后行的顺序变了=。=

在Python中,首先导入 numpy 和 pandas 模块:

接着导入数据表。

之后通过以下语句实现merge_table表的建立:

结果如下:

现在假设score表多了一行数据:

如图所示,蓝色部分为多出的数据,且课程6-106在course表中不存在。请无视逻辑问题,主要是为了方便讨论:)

遇到这种情况,上述的实现方法会出现一个问题:

因为课程号6-106在course表里并不存在,所以函数在返回值的时候出错了。

解决的办法有一个,就是在原函数上嵌套 IF() 函数。比如我把 E29 的函数更改为:

如果函数计算结果错误,则返回0。

在SQL中,如果出现此类情况, LEFT JOIN 会返回NULL值:

如果想把NULL值替换为0,查询合并表的时候可以加上 isnull() 函数(MySQL中此函数写作 ifnull() ):

如果函数计算结果错误,则返回0

返回结果和Excel的差不多,就不上图了。

Python中情况类似:

如果想把NaN值替换为0,只需要在创建merge_table表之后,添加一行语句:

返回结果也不上图了,和Excel的一样。

面对合并表中数据不匹配,SQL和Python中都可以在合并表的时候把多出项忽略不计,只要把 LEFT JOIN 换成 INNER JOIN 就行了。但Excel不能自动删除多出项所在行。

为了方便,现在做一个透视表,该表返回 选了课的同学的学号和其平均课程成绩

三个软件对于透视表的实现都很友好,并且效率相近。

Excel在数据透视表工具下把列各种拖拽就行了。

另外,Excel的数据透视表可以选择返回合计(Grand Total)或者不返回。

语句:

结果:

语句:

结果:

一般做透视表的最终目的是作图,毕竟一图胜千语。

从这个目的出发,Python比SQL、Excel更实用,一来Python比Excel作图高效很多,二来SQL不能作图。

通过上述对比可以发现,Excel合并关联表比SQL、Python要低效得多,而且在“数据不匹配”问题上解决得不好;而在另一方面,三者在创建透视表上表现相似,就看你习惯用哪个了:)

对比Excel学Python数据可视化

就是利用Python生成各种图表,也是本书的核心。

1、条形图

#导入要用的matplotlib库
import matplotlib.pyplot as plt import numpy as np
#解决乱码问题 plt.rcParams[
"font.sans-serif"]=SimHei
#(在Y轴上分为1等份,在X轴上分为1等份,画布位于1象限)
plt.subplot(1,1,1) #传入基础数据 x = np.array(["东区","南区","西区","北区"]) y1 = np.array([7566,6555,5335,6310]) y2 = np.array([4500,4555,3335,5310]) #设置基本属性 plt.title("柱线图",loc="center") plt.xlabel("分区") plt.ylabel("任务量") plt.barh(x,height=0.5,label = "任务量",width = y1) #显示图例 plt.legend()
#不显示网格 plt.grid(False) #迭代赋值
for a,b in zip(x,y1): plt.text(b,a,a,ha="center",va="bottom",fontsize = 12)
#将图片存入桌面 plt.savefig(r
"C:\\Users\\admin\\Desktop\\新建文件夹\\条形图")

技术图片

2、折线图

#折线图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
# plt.subplots(1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
# plt.xticks(ticks,labels)
# plt.yticks(ticks,labels)
# plt.xticks(np.arange(12),["0","1月份","2月份","3月份","4月份","5月份","6月份","7月份","8月份","9月份","10月份","11月份"])
# plt.yticks(np.arange(1000,7000,1000),["1000人","2000人","3000人","4000人","5000人","6000人","7000","8000"])
plt.xticks(np.arange(12))

x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([866,2335,5710,6482,6120,1605,3813,4428,4631,1001,1002])
plt.plot(x,y,color = "r",linestyle = "dashdot",linewidth = 1,marker = "v",markersize = 5,label = "注册用户数")
#          linewidth = 1,marker = "o",)   
plt.title("XXX公司1-9月注册用户量",loc = "center")
for a,b in zip(x,y):
    plt.text(a,b,b,ha=center,va = bottom,fontsize = 10)

plt.grid(b = True)
plt.legend()
# plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\折线图")

技术图片

3、气泡图

#气泡图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([6,35,10,82,20,15,13,28,31,10,12])
# colors = y*10    #无用?
area = y*20
plt.scatter(x,y,marker = "o",s = area)
for a,b in zip(x,y):
    plt.text(a,b,b,ha=center,va = center,fontsize = 12,color = "white")

plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\气泡图")

技术图片

4、柱形图-堆积图

#柱形图
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)

# x = np.array(["东区","南区","西区","北区"])
x = np.array([1,2,3,4])
plt.xticks(x+0.1,["东区","南区","西区","北区"])
y1 = np.array([7566,6555,5335,6310])
y2 = np.array([4500,4555,3335,5310])

plt.title("柱线图",loc="center")
plt.xlabel("分区")
plt.ylabel("任务量")
plt.bar(x,y1,label = "任务量",width = 0.3)
# plt.bar(x+0.3,y2,label = "完成量",width = 0.3)
plt.bar(x,y2,label = "完成量",width = 0.3)
plt.legend()
plt.grid(False)

for a,b in zip(x,y1):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# for a,b in zip(x+0.3,y2):
#     plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
for a,b in zip(x,y2):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\柱形图")
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\堆积图")

技术图片

5、面积图

#面积图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6])
y1 = np.array([6360,6555,5335,6310,5357,6666])
y2 = np.array([4500,4555,3335,5310,4444,5674])
plt.stackplot(x,y1,y2)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\面积图")

技术图片

6、树地图

#树地图
#squarify.plot(size,label,color,value,edgecolor,linewidth)r
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
import squarify

size = np.array([3.4,0.693,0.585,0.570,0.562,0.531,0.530,0.524,0.501,0.478,0.468,0.436])
xingzuo = np.array(["未知","摩揭座","天秤座","双鱼座","天竭座","金牛座",
                  "处女座","双子座","射手座","狮子座","水瓶座","白羊座"])
rate = np.array([34%,6.93%,"5.85%","5.70%","5.62%","5.31%","5.30%","5.24%","5.01%","4.78%","4.68%","4.36%"])
colors = [steelblue,#9999ff,red,indianred,green,yellow,orange]
plot = squarify.plot(sizes = size,
                    label = xingzuo,
                    color = colors,
                    value = rate,
                    edgecolor = "white",
                    linewidth = 3)
plt.title("星座",fontdict = fontsize:12)
plt.axis("off")
# plt.tick_params(top = ‘off‘,right = ‘off‘)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\树地图")

技术图片

7、饼图

import matplotlib.pyplot as plt
import numpy as np
x = np.array([5555,6666,7777,8888])
labels = ["A","B","C","D"]
explode = [0.1,0,0,0]
labeldistance = 1.1
plt.pie(x,labels=labels,autopct=%.1f%%,shadow=True,explode = explode,radius=1.0,labeldistance=labeldistance)
#        explode = explode,radius=1.0,labeldistance=labeldistance)   #错误示范

技术图片

8、双环形图

这个是从网上找的案例,一起总结在一块。

import matplotlib as mpl
import matplotlib.pyplot as plt

# 设置图片大小
plt.figure(figsize = (10, 8))

# 生成数据
labels = [A, B, C, D, 其他]
share_laptop = [0.45, 0.25, 0.15, 0.05, 0.10]
share_pc = [0.35, 0.35, 0.08, 0.07, 0.15]
colors = [c, r, y, g, gray]

# 外环
wedges1, texts1, autotexts1 = plt.pie(share_laptop,
    autopct = %3.1f%%,
    radius = 1,
    pctdistance = 0.85,
    colors = colors,
    startangle = 180,
    textprops = color: w,
    wedgeprops = width: 0.3, edgecolor: w
)

# 内环
wedges2, texts2, autotexts2 = plt.pie(share_pc,
    autopct = %3.1f%%,
    radius = 0.7,
    pctdistance = 0.75,
    colors = colors,
    startangle = 180,
    textprops = color: w,
    wedgeprops = width: 0.3, edgecolor: w
)

# 图例
plt.legend(wedges1,
          labels,
          fontsize = 12,
          title = 公司列表,
          loc = center right,
          bbox_to_anchor = (1, 0.6))

# 设置文本样式
plt.setp(autotexts1, size=15, weight=bold)
plt.setp(autotexts2, size=15, weight=bold)
plt.setp(texts1, size=15)

# 标题
plt.title(2017年笔记本及PC电脑市场份额, fontsize=20)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\环形图")
plt.show()

技术图片

以上是关于数据处理简单对比:Excel,SQL,Python的主要内容,如果未能解决你的问题,请参考以下文章

《对比Excel,轻松学习Python数据分析》

SQL两个表数据对比

Excel处理数据与Python处理数据方法对比

python对比两张EXCEL表,将不同的数据生成新表?

python pandas如何查找不同excel表格的数据并对比大小?

对比Excel学Python数据可视化