SQLAlchemy(包含有Flask-Migrate知识点)

Posted ゛竹先森゜

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SQLAlchemy(包含有Flask-Migrate知识点)相关的知识,希望对你有一定的参考价值。

what‘s the SQLAlchemy

  SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

安装

pip3 install sqlalchemy

   SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

mysql-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
    
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
    
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
    
cx_Oracle
    oracle+cx_oracle://user:[email protected]:port/dbname[?key=value&key=value...]
    
更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html

  

使用SQLAlchemy

一、利用原生SQL语句进行操作

  利用原生SQL语句进行是一种操作方式,但其实平常我们并不适用这种方式。

技术分享图片
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
 
engine = create_engine(
    "mysql+pymysql://root:[email protected]:3306/t1?charset=utf8",
    max_overflow=0,  # 超过连接池大小外最多创建的连接
    pool_size=5,  # 连接池大小
    pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
    pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
 
 
def task(arg):
    conn = engine.raw_connection()
    cursor = conn.cursor()
    cursor.execute(
        "select * from t1"
    )
    result = cursor.fetchall()
    cursor.close()
    conn.close()
 
 
for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
方式一
技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine("mysql+pymysql://root:[email protected]:3306/t1", max_overflow=0, pool_size=5)


def task(arg):
    conn = engine.contextual_connect()
    with conn:
        cur = conn.execute(
            "select * from t1"
        )
        result = cur.fetchall()
        print(result)


for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
方式二
技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
from sqlalchemy.engine.result import ResultProxy
engine = create_engine("mysql+pymysql://root:[email protected]:3306/t1", max_overflow=0, pool_size=5)


def task(arg):
    cur = engine.execute("select * from t1")
    result = cur.fetchall()
    cur.close()
    print(result)


for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
方式三
技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# 查询
# cursor = session.execute(‘select * from users‘)
# result = cursor.fetchall()

# 添加
cursor = session.execute(insert into users(name) values(:value),params={"value":wupeiqi})
session.commit()
print(cursor.lastrowid)

session.close()
方式四(利用sessionmaker创建游标,若用到原生SQL操作时推荐用这个)

 

二、ORM

  flask是轻量级框架,所以本身并不具备ORM。想要操作数据库就必须配合着SQLAlchemy来使用。

注:SQLAlchemy创建的表默认引擎不是InnoDB,若想改成InnoDB只要加一条参数即可

class User(BaseModel):
    __table_args__ = {
        ‘mysql_engine‘: ‘InnoDB‘,
        ‘mysql_charset‘: ‘utf8‘
    }

  

创建单表:

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

Base = declarative_base()


class Users(Base):
    __tablename__ = users#表名,与Django不同的是,flask必须写

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    # email = Column(String(32), unique=True)
    # ctime = Column(DateTime, default=datetime.datetime.now)
    # extra = Column(Text, nullable=True)

    __table_args__ = (
        # UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘),
        # Index(‘ix_id_name‘, ‘name‘, ‘email‘),
    )


def init_db():
    """
    根据类创建数据库表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

    Base.metadata.create_all(engine)


def drop_db():
    """
    根据类删除数据库表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

    Base.metadata.drop_all(engine)


if __name__ == __main__:
    drop_db()
    init_db()
单表示例

创建多表(包含FK和M2M两种可能):

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

Base = declarative_base()


# ##################### 单表示例 #########################
class Users(Base):
    __tablename__ = users

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)
    age = Column(Integer, default=18)
    email = Column(String(32), unique=True)
    ctime = Column(DateTime, default=datetime.datetime.now)
    extra = Column(Text, nullable=True)

    __table_args__ = (
        # UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘),
        # Index(‘ix_id_name‘, ‘name‘, ‘extra‘),
    )


class Hosts(Base):
    __tablename__ = hosts

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)
    ctime = Column(DateTime, default=datetime.datetime.now)


# ##################### 一对多示例 #########################
class Hobby(Base):
    __tablename__ = hobby
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default=篮球)


class Person(Base):
    __tablename__ = person
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))#外键

    # 与生成表结构无关,仅用于查询方便,backref相当于Django的related_name
    hobby = relationship("Hobby", backref=pers)


# ##################### 多对多示例 #########################
#与Django不同,flask中多对多的第三张表必须自己手动创建
class Server2Group(Base):
    __tablename__ = server2group
    id = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(server.id))
    group_id = Column(Integer, ForeignKey(group.id))


class Group(Base):
    __tablename__ = group
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 与生成表结构无关,仅用于查询方便,secondary指的是第三张表的表名
    servers = relationship(Server, secondary=server2group, backref=groups)


class Server(Base):
    __tablename__ = server

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)


def init_db():
    """
    根据类创建数据库表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:1[email protected]:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

    Base.metadata.create_all(engine)


def drop_db():
    """
    根据类删除数据库表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

    Base.metadata.drop_all(engine)


if __name__ == __main__:
    drop_db()
    init_db()
多表示例(含FK和M2M)

基本增删改查示例:

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text

from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# ################ 添加 ################
"""
obj1 = Users(name="wupeiqi")#创建对象
session.add(obj1)#加入内存
#批量创建
session.add_all([
    Users(name="wupeiqi"),
    Users(name="alex"),
    Hosts(name="c1.com"),
])
session.commit()#提交(不执行这步,上述操作都无效)
"""

# ################ 删除 ################
"""
session.query(Users).filter(Users.id > 2).delete()#删除操作
session.commit()#提交
"""
# ################ 修改 ################
"""
#synchronize_session是用来说明相加时时数字类型的相加还是字符串类型的相加
session.query(Users).filter(Users.id > 0).update({"name" : "099"})
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
session.commit()#提交
"""
# ################ 查询 ################
"""
#filter_by的后面的括号直接写字段=条件,类似Django。filter则需写表名.字段==条件
r1 = session.query(Users).all()
r2 = session.query(Users.name.label(‘xx‘), Users.age).all()
r3 = session.query(Users).filter(Users.name == "alex").all()
r4 = session.query(Users).filter_by(name=‘alex‘).all()
r5 = session.query(Users).filter_by(name=‘alex‘).first()
#占位符操作示例
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name=‘fred‘).order_by(Users.id).all()
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name=‘ed‘).all()
"""


session.close()#操作commit后,需将链接关闭
View Code

其他常用的查询操作(条件查询、模糊查询、排序、分组、连表、组合)

技术分享图片
# 条件
ret = session.query(Users).filter_by(name=alex).all()
ret = session.query(Users).filter(Users.id > 1, Users.name == eric).all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == eric).all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=eric))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == eric)).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == eric)).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == eric, Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like(e%)).all()
ret = session.query(Users).filter(~Users.name.like(e%)).all()

# 限制
ret = session.query(Users)[1:2]

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分组
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 连表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()

ret = session.query(Person).join(Favor, isouter=True).all()


# 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
View Code

 

进阶

  基于scop-session创建连接可以增加多线程操作的安全

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session
from models import Users

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

"""
        # 方式一:由于无法提供线程共享功能,所有在开发时要注意,在每个线程中自己创建 session。
        #         from sqlalchemy.orm.session import Session
        #         自己具有操作数据库的:‘close‘, ‘commit‘, ‘connection‘, ‘delete‘, ‘execute‘, ‘expire‘,.....
        
        session = SessionFactory()

        # print(‘原生session‘,session)
        # 操作
        session.close()
"""

    


"""
# 线程安全,基于本地线程实现每个线程用同一个session
# 特殊的:scoped_session中有原来方法的Session中的一下方法:

public_methods = (
    ‘__contains__‘, ‘__iter__‘, ‘add‘, ‘add_all‘, ‘begin‘, ‘begin_nested‘,
    ‘close‘, ‘commit‘, ‘connection‘, ‘delete‘, ‘execute‘, ‘expire‘,
    ‘expire_all‘, ‘expunge‘, ‘expunge_all‘, ‘flush‘, ‘get_bind‘,
    ‘is_modified‘, ‘bulk_save_objects‘, ‘bulk_insert_mappings‘,
    ‘bulk_update_mappings‘,
    ‘merge‘, ‘query‘, ‘refresh‘, ‘rollback‘,
    ‘scalar‘
)
"""
session = scoped_session(Session)


# ############# 执行ORM操作 #############
obj1 = Users(name="alex1")
session.add(obj1)



# 提交事务
session.commit()
# 关闭session
session.remove()#我们不一样
View Code

连表查询FK

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Hobby(caption=‘乒乓球‘),
    Hobby(caption=‘羽毛球‘),
    Person(name=‘张三‘, hobby_id=3),
    Person(name=‘李四‘, hobby_id=4),
])

person = Person(name=‘张九‘, hobby=Hobby(caption=‘姑娘‘))
session.add(person)

hb = Hobby(caption=‘人妖‘)
hb.pers = [Person(name=‘文飞‘), Person(name=‘博雅‘)]
session.add(hb)

session.commit()
"""

# 使用relationship正向查询
"""
v = session.query(Person).first()
print(v.name)
print(v.hobby.caption)
"""

# 使用relationship反向查询
"""
v = session.query(Hobby).first()
print(v.caption)
print(v.pers)
"""

session.close()

基于relationship操作ForeignKey
View Code

连表查询M2M

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Server(hostname=‘c1.com‘),
    Server(hostname=‘c2.com‘),
    Group(name=‘A组‘),
    Group(name=‘B组‘),
])
session.commit()

s2g = Server2Group(server_id=1, group_id=1)
session.add(s2g)
session.commit()


gp = Group(name=‘C组‘)
gp.servers = [Server(hostname=‘c3.com‘),Server(hostname=‘c4.com‘)]
session.add(gp)
session.commit()


ser = Server(hostname=‘c6.com‘)
ser.groups = [Group(name=‘F组‘),Group(name=‘G组‘)]
session.add(ser)
session.commit()
"""


# 使用relationship正向查询
"""
v = session.query(Group).first()
print(v.name)
print(v.servers)
"""

# 使用relationship反向查询
"""
v = session.query(Server).first()
print(v.hostname)
print(v.groups)
"""


session.close()

基于relationship操作m2m
View Code

关联子查询

技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text, func
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:[email protected]:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()

# 关联子查询
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid 
FROM server 
WHERE server.id = `group`.id) AS anon_1 
FROM `group`
"""


# 原生SQL
"""
# 查询
cursor = session.execute(‘select * from users‘)
result = cursor.fetchall()

# 添加
cursor = session.execute(‘insert into users(name) values(:value)‘,params={"value":‘wupeiqi‘})
session.commit()
print(cursor.lastrowid)
"""

session.close()

其他
View Code

 

Flask-SQLAlchemy

  flask-sqlalchemy 是在 sqlalchemy 的基础上,提供了一些常用的工具,并预设了一些默认值,帮助你=我们更轻松地完成常见任务。
  flask-sqlalchemy 用起来比直接用 sqlalchemy 方便、省事,不过有些高级一点的功能如果不了解 sqlalchemy 的话会用不好。

下面我们来详述flask-sqlalchemy的操作方法

# 1. 引入Flask-SQLAlchemy
from flask_sqlalchemy import SQLAlchemy

# 2.实例化一个SQLAlchemy对象
"""
实例化方式一:
在函数里面,SQLAlchemy(app)  #如果想在其他地方使用这种方式就不好使了,所以推荐使用方式二
"""

#方式二
db = SQLAlchemy()#在全局中创建实例化

db.init_app(app)  #在函数中调用init_app方法吧app放进去了

# 3. 导入models中的表
from .models import *

#4. 在需要创建表的文件中导入db.model,所有的表再创建时继承db.model

#5. 借助Flask-Migrate组件来完成表的生成
"""
安装 pip3 install Flask-Migrate
# 5.1 导入
from flask_migrate import Migrate, MigrateCommand
from app import create_app, db

app = create_app()
manager = Manager(app)
# 5.2 创建migrate示例
migrate = Migrate(app, db)
# 5.3 创建db命令
manager.add_command(‘db‘, MigrateCommand)

"""





#上述代码完毕后,我们就可以在命令终端敲入类似Django的终端代码在数据库生成表了
python manage.py db init#只需初次创建库时敲

#以下两行代码在每次对数据库中的表进行修改时都需执行(数据库迁移)            
python manage.py db migrate#功能与Django的python manage.py db makemigrations相同
python manage.py db upgrade#功能与Django的python manage.py db migrate相同





#以后执行SQL时,我们就可以实现与Django类似的ORM操作了:
#方式一:
 result = db.session.query(models.User.id,models.User.name).all()
db.session.remove()
#方式二:
 result = models.Users.query.all()

 


以上是关于SQLAlchemy(包含有Flask-Migrate知识点)的主要内容,如果未能解决你的问题,请参考以下文章

使用具有单个 sqlalchemy 模型的多个数据库

深入浅出Flask(47):flask_sqlalchemy的应用动态绑定

python sqlalchemy模型包

Unresolved reference ‘SQLAlchemy‘

Python SQLalchemy 包...如果数据库在 AWS 上,它肯定是 Redshift 吗?

sqlalchemy在pythonweb中开发的使用(基于tornado的基础上)