Hadoop源码篇--Reduce篇
Posted L先生AI课堂
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop源码篇--Reduce篇相关的知识,希望对你有一定的参考价值。
一。前述
Reduce文件会从Mapper任务中拉取很多小文件,小文件内部有序,但是整体是没序的,Reduce会合并小文件,然后套个归并算法,变成一个整体有序的文件。
二。代码
ReduceTask源码:
public void run(JobConf job, final TaskUmbilicalProtocol umbilical) throws IOException, InterruptedException, ClassNotFoundException { job.setBoolean(JobContext.SKIP_RECORDS, isSkipping()); if (isMapOrReduce()) { copyPhase = getProgress().addPhase("copy"); sortPhase = getProgress().addPhase("sort"); reducePhase = getProgress().addPhase("reduce"); } // start thread that will handle communication with parent TaskReporter reporter = startReporter(umbilical); boolean useNewApi = job.getUseNewReducer(); initialize(job, getJobID(), reporter, useNewApi); // check if it is a cleanupJobTask if (jobCleanup) { runJobCleanupTask(umbilical, reporter); return; } if (jobSetup) { runJobSetupTask(umbilical, reporter); return; } if (taskCleanup) { runTaskCleanupTask(umbilical, reporter); return; } // Initialize the codec codec = initCodec(); RawKeyValueIterator rIter = null; ShuffleConsumerPlugin shuffleConsumerPlugin = null; Class combinerClass = conf.getCombinerClass(); CombineOutputCollector combineCollector = (null != combinerClass) ? new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null; Class<? extends ShuffleConsumerPlugin> clazz = job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class); shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job); LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin); ShuffleConsumerPlugin.Context shuffleContext = new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical, super.lDirAlloc, reporter, codec, combinerClass, combineCollector, spilledRecordsCounter, reduceCombineInputCounter, shuffledMapsCounter, reduceShuffleBytes, failedShuffleCounter, mergedMapOutputsCounter, taskStatus, copyPhase, sortPhase, this, mapOutputFile, localMapFiles); shuffleConsumerPlugin.init(shuffleContext); rIter = shuffleConsumerPlugin.run();//按顺序迭代 // free up the data structures mapOutputFilesOnDisk.clear(); sortPhase.complete(); // sort is complete setPhase(TaskStatus.Phase.REDUCE); statusUpdate(umbilical); Class keyClass = job.getMapOutputKeyClass(); Class valueClass = job.getMapOutputValueClass(); RawComparator comparator = job.getOutputValueGroupingComparator();//分组比较 对应解析源码1 if (useNewApi) { runNewReducer(job, umbilical, reporter, rIter, comparator, //对应解析源码2 keyClass, valueClass); } else { runOldReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass); } shuffleConsumerPlugin.close(); done(umbilical, reporter); } 源码1:分组比较器的源码 public RawComparator getOutputValueGroupingComparator() { Class<? extends RawComparator> theClass = getClass( JobContext.GROUP_COMPARATOR_CLASS, null, RawComparator.class);//用户没有设置分组比较器的时候,用默认的 if (theClass == null) { return getOutputKeyComparator();//对应解析源码1.1 } return ReflectionUtils.newInstance(theClass, this); }
源码1.1排序比较器,当用户不设置的时候取排序比较器实现,此时如果用户配置排序比较器,用排序比较器,没有的话用默认的Key的比较器
public RawComparator getOutputKeyComparator() { Class<? extends RawComparator> theClass = getClass( JobContext.KEY_COMPARATOR, null, RawComparator.class); if (theClass != null) return ReflectionUtils.newInstance(theClass, this); return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class), this); }
总结:
在Map端是真正改变(调整)Key的顺序的,在Reduce端是不会真正改变(调整)拉过来的其顺序的,Reduce不会重新排序,Reduce端强依赖Map端的输出。
解析源码2:runNewReduce的实现
void runNewReducer(JobConf job, final TaskUmbilicalProtocol umbilical, final TaskReporter reporter, RawKeyValueIterator rIter, RawComparator<INKEY> comparator, Class<INKEY> keyClass, Class<INVALUE> valueClass ) throws IOException,InterruptedException, ClassNotFoundException { // wrap value iterator to report progress. final RawKeyValueIterator rawIter = rIter;//真正的迭代器 rIter = new RawKeyValueIterator() { public void close() throws IOException { rawIter.close(); } public DataInputBuffer getKey() throws IOException { return rawIter.getKey(); } public Progress getProgress() { return rawIter.getProgress(); } public DataInputBuffer getValue() throws IOException { return rawIter.getValue(); } public boolean next() throws IOException { boolean ret = rawIter.next(); reporter.setProgress(rawIter.getProgress().getProgress()); return ret; } }; // make a task context so we can get the classes org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, getTaskID(), reporter); // make a reducer org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer = (org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getReducerClass(), job); org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> trackedRW = new NewTrackingRecordWriter<OUTKEY, OUTVALUE>(this, taskContext); job.setBoolean("mapred.skip.on", isSkipping()); job.setBoolean(JobContext.SKIP_RECORDS, isSkipping()); org.apache.hadoop.mapreduce.Reducer.Context reducerContext = createReduceContext(reducer, job, getTaskID(), rIter, reduceInputKeyCounter, //构建上下文的时候把迭代器传进来 reduceInputValueCounter, trackedRW, committer, reporter, comparator, keyClass,//比较器 解析源码2.1 valueClass); try { reducer.run(reducerContext);//构建完上下文之后运行Redude的Run方法 解析源码Reduce2.2 } finally { trackedRW.close(reducerContext); } }
解析源码2.1: createReduceContext实现构建上下文的源码
public ReduceContextImpl(Configuration conf, TaskAttemptID taskid, RawKeyValueIterator input, //把迭代器传给输入对象Input Counter inputKeyCounter, Counter inputValueCounter, RecordWriter<KEYOUT,VALUEOUT> output, OutputCommitter committer, StatusReporter reporter, RawComparator<KEYIN> comparator, Class<KEYIN> keyClass, Class<VALUEIN> valueClass ) throws InterruptedException, IOException{ super(conf, taskid, output, committer, reporter); this.input = input; this.inputKeyCounter = inputKeyCounter; this.inputValueCounter = inputValueCounter; this.comparator = comparator; this.serializationFactory = new SerializationFactory(conf); this.keyDeserializer = serializationFactory.getDeserializer(keyClass); this.keyDeserializer.open(buffer); this.valueDeserializer = serializationFactory.getDeserializer(valueClass); this.valueDeserializer.open(buffer); hasMore = input.next(); this.keyClass = keyClass; this.valueClass = valueClass; this.conf = conf; this.taskid = taskid; }
/** Start processing next unique key. */
public boolean nextKey() throws IOException,InterruptedException {//实际上Reduce中run方法中的contect.netKey调用的逻辑
while (hasMore && nextKeyIsSame) {//第一次假 放空
nextKeyValue();
}
if (hasMore) {
if (inputKeyCounter != null) {
inputKeyCounter.increment(1);
}
return nextKeyValue();
} else {
return false;
}
}
/**
* Advance to the next key/value pair.
*/
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!hasMore) {
key = null;
value = null;
return false;
}
firstValue = !nextKeyIsSame;
DataInputBuffer nextKey = input.getKey();
currentRawKey.set(nextKey.getData(), nextKey.getPosition(),
nextKey.getLength() - nextKey.getPosition());
buffer.reset(currentRawKey.getBytes(), 0, currentRawKey.getLength());
key = keyDeserializer.deserialize(key);
DataInputBuffer nextVal = input.getValue();
buffer.reset(nextVal.getData(), nextVal.getPosition(), nextVal.getLength()
- nextVal.getPosition());
value = valueDeserializer.deserialize(value);
currentKeyLength = nextKey.getLength() - nextKey.getPosition();
currentValueLength = nextVal.getLength() - nextVal.getPosition();
if (isMarked) {
backupStore.write(nextKey, nextVal);
}
hasMore = input.next();
if (hasMore) {
nextKey = input.getKey();
nextKeyIsSame = comparator.compare(currentRawKey.getBytes(), 0,
currentRawKey.getLength(),
nextKey.getData(),
nextKey.getPosition(),
nextKey.getLength() - nextKey.getPosition()
) == 0;//判断当前key和下一个Key是否相等。
} else {
nextKeyIsSame = false;
}
inputValueCounter.increment(1);
return true;
}
public KEYIN getCurrentKey() {
return key;
}
@Override
public VALUEIN getCurrentValue() {
return value;
}
解析源码2.2 Reduce
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.mapreduce; import java.io.IOException; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.mapreduce.task.annotation.Checkpointable; import java.util.Iterator; * public class IntSumReducer<Key> extends Reducer<Key,IntWritable, * Key,IntWritable> { * private IntWritable result = new IntWritable(); * * public void reduce(Key key, Iterable<IntWritable> values, * Context context) throws IOException, InterruptedException { * int sum = 0; * for (IntWritable val : values) { * sum += val.get(); * } * result.set(sum); * context.write(key, result); * } * } * </pre></blockquote></p> * * @see Mapper * @see Partitioner */ @Checkpointable @InterfaceAudience.Public @InterfaceStability.Stable public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { /** * The <code>Context</code> passed on to the {@link Reducer} implementations. */ public abstract class Context implements ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> { } /** * Called once at the start of the task. */ protected void setup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * This method is called once for each key. Most applications will define * their reduce class by overriding this method. The default implementation * is an identity function. */ @SuppressWarnings("unchecked") protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context ) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); } } /** * Called once at the end of the task. */ protected void cleanup(Context context ) throws IOException, InterruptedException { // NOTHING } /** * Advanced application writers can use the * {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to * control how the reduce task works. */ public void run(Context context) throws IOException, InterruptedException { setup(context); try { while (context.nextKey()) {//实际上在这一步里实际上调用了NextKeyValue的值更新了 hasmore,nextKeyisSame,Key,Value的值 reduce(context.getCurrentKey(), context.getValues(), context);//解析源码2.2.1 // If a back up store is used, reset it Iterator<VALUEIN> iter = context.getValues().iterator(); if(iter instanceof ReduceContext.ValueIterator) { ((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore(); } } } finally { cleanup(context); } } }
源码2.2.1context.getValues的最终实现是一个迭代器
protected class ValueIterator implements ReduceContext.ValueIterator<VALUEIN> { private boolean inReset = false; private boolean clearMarkFlag = false; @Override public boolean hasNext() { try { if (inReset && backupStore.hasNext()) { return true; } } catch (Exception e) { e.printStackTrace(); throw new RuntimeException("hasNext failed", e); } return firstValue || nextKeyIsSame; } @Override public VALUEIN next() { if (inReset) { try { if (backupStore.hasNext()) { backupStore.next(); DataInputBuffer next = backupStore.nextValue(); buffer.reset(next.getData(), next.getPosition(), next.getLength() - next.getPosition()); value = valueDeserializer.deserialize(value); return value; } else { inReset = false; backupStore.exitResetMode(); if (clearMarkFlag) { clearMarkFlag = false; isMarked = false; } } } catch (IOException e) { e.printStackTrace(); throw new RuntimeException("next value iterator failed", e); } } // if this is the first record, we don\'t need to advance if (firstValue) { firstValue = false; return value; } // if this isn\'t the first record and the next key is different, they // can\'t advance it here. if (!nextKeyIsSame) { throw new NoSuchElementException("iterate past last value"); } // otherwise, go to the next key/value pair try { nextKeyValue();//这个迭代器自身是没有数据的,在Next中调用的还是 nextKeyValue,在这个NextKeyValue中调用的是Input的输入数据 return value; } catch (IOException ie) { throw new RuntimeException("next value iterator failed", ie); } catch (InterruptedException ie) { // this is bad, but we can\'t modify the exception list of java.util throw new RuntimeException("next value iterator interrupted", ie); } }
总结:以上说明一个流程。Reduce会拉回一个数据集,然后封装一个迭代器,真迭代器,ReduceContext会基于这个迭代器给我们封装一个方法,其中包括NextKeyValue这个方法,通过这个方法简介更新Key,Value的值,然后再Reduce方法的Run中有一个While循环,调用的是NextKey方法,底层调用的还是netxkeyValue方法,然后调用Reduce方法,传进去context.getCurrentKey(), context.getValues()两个方法,然后基于Value方法迭代,里面有HasNext和Next方法,Next方法实际上调用的还是真正的迭代器,最终数据时从镇迭代器中迭代出来的,在真正迭代器中有一个重要的标识NextKeyisSame,这个标识会被hasNext方法用到然后判断下一个key是否 相同,直到一组数据。
PS:补充一个知识点:
next调用的是NextKeyValue的方法,会把KeyValue真正改变,所以这块传的是引用传递。会改变同一块内存中的数据。
持续更新中。。。。,欢迎大家关注我的公众号LHWorld.
以上是关于Hadoop源码篇--Reduce篇的主要内容,如果未能解决你的问题,请参考以下文章