Spark入门,概述,部署,以及学习(Spark是一种快速通用可扩展的大数据分析引擎)

Posted --->别先生<---

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark入门,概述,部署,以及学习(Spark是一种快速通用可扩展的大数据分析引擎)相关的知识,希望对你有一定的参考价值。

1:Spark的官方网址:http://spark.apache.org/

1:Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。
2:Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。
3:Spark是一种通用的大数据计算框架,一种通用的大数据快速处理引擎,正如传统大数据技术,hadoop的mapreduce,hive引擎,以及Storm流式实时计算引擎等等。
4:Spark包含了大数据领域常见的各种计算框架,比如Spark core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLlib用于机器学习,Spark GraphX用于图计算。
5:Spark主要用户大数据的计算,而Hadoop以后主要用于大数据的存储(比如,hdfs,hive,hbase),以及资源调度(yarn)。
6:Spark的核心,其实就是一种新型的大数据框架,而不是对Hadoop的替代,可以基于Hadoop上存储的大数据进行计算(比如:Hdfs,Hive)。Spark只是替代Hadoop的一部分,也就是Hadoop的计算框架Mapreduce,Hive查询引擎。但是Spark本身是不提供大数据的存储的。
7:对比:Spark Core(Spark SQL,Spark Streaming,Spark ML,Spark Graphx,Spark R);和Hadoop(Hive,Storm,Mahout,Griph);

 2:Spark特点:

1 1:特点一:快
2     与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
3 2:特点二:易用
4     Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
5 3:特点三:通用
6     Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。
7 4:特点四:兼容性    
8     Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

Spark的算子分为两类,一类叫做Transformation转换,一类叫做Action动作。Transformation延迟执行,当计算任务触发Action时候才会真正开始计算。

3:Spark的部署安装(上传jar,过程省略,记得安装好jdk。):

下载网址:http://www.apache.org/dyn/closer.lua/spark/ 或者 http://spark.apache.org/downloads.html

Spark的解压缩操作,如下所示:

哈哈哈,犯了一个低级错误,千万记得加-C,解压安装包到指定位置。是大写的哦;

然后呢,进入到Spark安装目录,进入conf目录并重命名并修改spark-env.sh.template文件,操作如下所示:

将spark-env.sh.template 名称修改为spark-env.sh,然后在该配置文件中添加如下配置,之后保存退出:

1 [root@localhost conf]# mv spark-env.sh.template spark-env.sh

具体操作如下所示:

也可以将scala和hadoop的目录以及自定义内存大小进行定义,如下所示:

注意:可以去spark的sbin目录里面的start-master.sh使用more start-master.sh命令来查找spark-env.sh里面对应的端口号,或者找其他的.sh文件找对应的值;

或者添加更多的配置,这样初始化不会使用默认的配置,更多配置自己可以看注释进行添加:

export JAVA_HOME=/home/hadoop/soft/jdk1.7.0_65
export SCALA_HOME=/home/hadoop/soft/scala-2.10.6
export HADOOP_HOME=/home/hadoop/soft/hadoop-2.6.4
export HADOOP_CONF_DIR=/home/hadoop/soft/hadoop-2.6.4/etc/hadoop export SPARK_MASTER_IP=slaver1 export SPARK_MASTER_PORT=7077 export SPARK_MASTER_WEBUI_PORT=8080 export SPARK_WORKER_PORT=7078 export SPARK_WORKER_WEBUI_PORT=8081 export SPARK_WORKER_CORES=1 export SPARK_WORKER_MEMORY=800M export SPARK_WORKER_INSTANCES=1

 具体操作如下所示:

下面这个图片的hadoop_conf_dir目录出现错误,注意修改:

然后呢,重命名并修改slaves.template文件,如下所示:

1 [root@localhost conf]# mv slaves.template slaves

在该文件中添加子节点所在的位置(Worker节点),操作如下所示,然后保存退出:

如果想记录日志,可以将log4j.properties.template修改为log4j.properties,用于记录日志,查看自己的错误信息:

[root@master conf]# cp log4j.properties.template log4j.properties

将配置好的Spark拷贝到其他节点上:

1 [root@localhost hadoop]# scp -r spark-1.6.1-bin-hadoop2.6/ slaver1:/home/hadoop/
2 [root@localhost hadoop]# scp -r spark-1.6.1-bin-hadoop2.6/ slaver2:/home/hadoop/

Spark集群配置完毕,目前是1个Master,2个Work(可以是多个Work),在master节点上启动Spark集群:

注意:启动的过程中,如果进入到spark的sbin目录直接输入start-all.sh是不行的,为什么呢,因为之前配置hadoop是配置的全局的,所以呢,这里不能直接输入start-all.sh命令来启动spark;可以输入sbin/start-all.sh启动spark;

启动后执行jps命令,主节点上有Master进程,其他子节点上有Work进行,登录Spark管理界面查看集群状态(主节点):http://master:8080/:

可以查看一下是否启动起来,如下所示:

然后在页面可以查看信息,如下所示,如果浏览器一直加载不出来,可能是防火墙没关闭(service iptables stop暂时关闭,chkconfig iptables off永久关闭):

到此为止,Spark集群安装完毕。

1 但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借助zookeeper,并且启动至少两个Master节点来实现高可靠,配置方式比较简单,如下所示:
2 Spark集群规划:node1,node2是Master;node3,node4,node5是Worker
3 安装配置zk集群,并启动zk集群,然后呢,停止spark所有服务,修改配置文件spark-env.sh,
4 在该配置文件中删掉SPARK_MASTER_IP并添加如下配置:
5 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk1,zk2,zk3 -Dspark.deploy.zookeeper.dir=/spark"
6 1.在node1节点上修改slaves配置文件内容指定worker节点
7 2.在node1上执行sbin/start-all.sh脚本,然后在node2上执行sbin/start-master.sh启动第二个Master

 4:执行Spark程序(执行第一个spark程序,如下所示):

执行如下所示,然后就报了一大推错误,由于错误过多就隐藏了,方便以后脑补:

1 [root@master bin]# ./spark-submit \\
2 > --class org.apache.spark.examples.SparkPi \\
3 > --master spark://master:7077 \\
4 > --executor-memory 1G \\
5 > --total-executor-cores 2 \\
6 > /home/hadoop/spark-1.6.1-bin-hadoop2.6/l
7 lib/      licenses/ logs/     
8 > /home/hadoop/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar \\
9 > 100

或者如下所示也可:
[root@master spark-1.6.1-bin-hadoop2.6]# bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://master:7077 --executor-memory 512M --total-executor-cores 2 /home/hadoop/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar 10

 错误如下所示,由于太长了就折叠起来了:

  1 [root@master hadoop]# cd spark-1.6.1-bin-hadoop2.6/
  2 [root@master spark-1.6.1-bin-hadoop2.6]# ls
  3 bin          conf  ec2       lib      licenses  NOTICE  R          RELEASE
  4 CHANGES.txt  data  examples  LICENSE  logs      python  README.md  sbin
  5 [root@master spark-1.6.1-bin-hadoop2.6]# bi
  6 bind         biosdecode   biosdevname  
  7 [root@master spark-1.6.1-bin-hadoop2.6]# cd bin/
  8 [root@master bin]# ls
  9 beeline             pyspark       run-example2.cmd  spark-class.cmd  spark-shell       spark-submit
 10 beeline.cmd         pyspark2.cmd  run-example.cmd   sparkR           spark-shell2.cmd  spark-submit2.cmd
 11 load-spark-env.cmd  pyspark.cmd   spark-class       sparkR2.cmd      spark-shell.cmd   spark-submit.cmd
 12 load-spark-env.sh   run-example   spark-class2.cmd  sparkR.cmd       spark-sql
 13 [root@master bin]# ./spark-submit \\
 14 > --class org.apache.spark.examples.SparkPi \\
 15 > --master spark://master:7077 \\
 16 > --executor-memory 1G \\
 17 > --total-executor-cores 2 \\
 18 > /home/hadoop/spark-1.6.1-bin-hadoop2.6/l
 19 lib/      licenses/ logs/     
 20 > /home/hadoop/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar \\
 21 > 100
 22 Using Spark\'s default log4j profile: org/apache/spark/log4j-defaults.properties
 23 18/01/02 19:44:01 INFO SparkContext: Running Spark version 1.6.1
 24 18/01/02 19:44:05 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
 25 18/01/02 19:44:06 INFO SecurityManager: Changing view acls to: root
 26 18/01/02 19:44:06 INFO SecurityManager: Changing modify acls to: root
 27 18/01/02 19:44:06 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
 28 18/01/02 19:44:09 INFO Utils: Successfully started service \'sparkDriver\' on port 41731.
 29 18/01/02 19:44:11 INFO Slf4jLogger: Slf4jLogger started
 30 18/01/02 19:44:11 INFO Remoting: Starting remoting
 31 18/01/02 19:44:12 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@192.168.3.129:49630]
 32 18/01/02 19:44:12 INFO Utils: Successfully started service \'sparkDriverActorSystem\' on port 49630.
 33 18/01/02 19:44:13 INFO SparkEnv: Registering MapOutputTracker
 34 18/01/02 19:44:13 INFO SparkEnv: Registering BlockManagerMaster
 35 18/01/02 19:44:13 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-c154fc3f-8552-49d4-9a9a-1ce79dba74d7
 36 18/01/02 19:44:13 INFO MemoryStore: MemoryStore started with capacity 517.4 MB
 37 18/01/02 19:44:14 INFO SparkEnv: Registering OutputCommitCoordinator
 38 18/01/02 19:44:15 INFO Utils: Successfully started service \'SparkUI\' on port 4040.
 39 18/01/02 19:44:15 INFO SparkUI: Started SparkUI at http://192.168.3.129:4040
 40 18/01/02 19:44:15 INFO HttpFileServer: HTTP File server directory is /tmp/spark-2b7d6514-96ad-4999-a7d0-5797b4a53652/httpd-fda58f3c-9d2e-49df-bfe7-2a72fd6dab39
 41 18/01/02 19:44:15 INFO HttpServer: Starting HTTP Server
 42 18/01/02 19:44:15 INFO Utils: Successfully started service \'HTTP file server\' on port 42161.
 43 18/01/02 19:44:18 INFO SparkContext: Added JAR file:/home/hadoop/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar at http://192.168.3.129:42161/jars/spark-examples-1.6.1-hadoop2.6.0.jar with timestamp 1514951058742
 44 18/01/02 19:44:19 INFO AppClient$ClientEndpoint: Connecting to master spark://master:7077...
 45 18/01/02 19:44:28 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20180102194427-0000
 46 18/01/02 19:44:30 INFO Utils: Successfully started service \'org.apache.spark.network.netty.NettyBlockTransferService\' on port 58259.
 47 18/01/02 19:44:30 INFO NettyBlockTransferService: Server created on 58259
 48 18/01/02 19:44:30 INFO BlockManagerMaster: Trying to register BlockManager
 49 18/01/02 19:44:30 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.3.129:58259 with 517.4 MB RAM, BlockManagerId(driver, 192.168.3.129, 58259)
 50 18/01/02 19:44:30 INFO BlockManagerMaster: Registered BlockManager
 51 18/01/02 19:44:31 INFO AppClient$ClientEndpoint: Executor added: app-20180102194427-0000/0 on worker-20180103095039-192.168.3.131-39684 (192.168.3.131:39684) with 1 cores
 52 18/01/02 19:44:31 INFO SparkDeploySchedulerBackend: Granted executor ID app-20180102194427-0000/0 on hostPort 192.168.3.131:39684 with 1 cores, 1024.0 MB RAM
 53 18/01/02 19:44:31 INFO AppClient$ClientEndpoint: Executor added: app-20180102194427-0000/1 on worker-20180103095039-192.168.3.130-46477 (192.168.3.130:46477) with 1 cores
 54 18/01/02 19:44:31 INFO SparkDeploySchedulerBackend: Granted executor ID app-20180102194427-0000/1 on hostPort 192.168.3.130:46477 with 1 cores, 1024.0 MB RAM
 55 18/01/02 19:44:33 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
 56 18/01/02 19:44:37 INFO SparkContext: Starting job: reduce at SparkPi.scala:36
 57 18/01/02 19:44:38 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:36) with 100 output partitions
 58 18/01/02 19:44:38 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at SparkPi.scala:36)
 59 18/01/02 19:44:38 INFO DAGScheduler: Parents of final stage: List()
 60 18/01/02 19:44:38 INFO DAGScheduler: Missing parents: List()
 61 18/01/02 19:44:38 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:32), which has no missing parents
 62 18/01/02 19:44:41 INFO AppClient$ClientEndpoint: Executor updated: app-20180102194427-0000/0 is now RUNNING
 63 18/01/02 19:44:41 INFO AppClient$ClientEndpoint: Executor updated: app-20180102194427-0000/1 is now RUNNING
 64 18/01/02 19:44:44 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes
 65 18/01/02 19:44:45 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1904.0 B, free 1904.0 B)
 66 18/01/02 19:44:46 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1216.0 B, free 3.0 KB)
 67 18/01/02 19:44:46 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.3.129:58259 (size: 1216.0 B, free: 517.4 MB)
 68 18/01/02 19:44:46 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
 69 18/01/02 19:44:46 INFO DAGScheduler: Submitting 100 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:32)
 70 18/01/02 19:44:46 INFO TaskSchedulerImpl: Adding task set 0.0 with 100 tasks
 71 18/01/02 19:45:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 72 18/01/02 19:45:16 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 73 18/01/02 19:45:31 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 74 18/01/02 19:45:46 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 75 18/01/02 19:46:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 76 18/01/02 19:46:07 INFO AppClient$ClientEndpoint: Executor updated: app-20180102194427-0000/0 is now EXITED (Command exited with code 1)
 77 18/01/02 19:46:07 INFO SparkDeploySchedulerBackend: Executor app-20180102194427-0000/0 removed: Command exited with code 1
 78 18/01/02 19:46:16 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 79 18/01/02 19:46:31 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 80 18/01/02 19:46:46 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 81 18/01/02 19:47:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 82 18/01/02 19:47:16 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 83 18/01/02 19:47:31 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 84 18/01/02 19:47:46 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
 85 ^C18/01/02 19:47:58 INFO SparkContext: Invoking stop() from shutdown hook
 86 18/01/02 19:47:58 INFO SparkUI: Stopped Spark web UI at http://192.168.3.129:4040
 87 18/01/02 19:47:58 INFO DAGScheduler: Job 0 failed: reduce at SparkPi.scala:36, took 201.147338 s
 88 18/01/02 19:47:58 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:36) failed in 191.823 s
 89 Exception in thread "main" 18/01/02 19:47:58 ERROR LiveListenerBus: SparkListenerBus has already stopped! Dropping event SparkListenerStageCompleted(org.apache.spark.scheduler.StageInfo@10d7390)
 90 18/01/02 19:47:58 ERROR LiveListenerBus: SparkListenerBus has already stopped! Dropping event SparkListenerJobEnd(0,1514951278747,JobFailed(org.apache.spark.SparkException: Job 0 cancelled because SparkContext was shut down))
 91 18/01/02 19:47:58 INFO SparkDeploySchedulerBackend: Shutting down all executors
 92 org.apache.spark.SparkException: Job 0 cancelled because SparkContext was shut down
 93     at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:806)
 94     at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:804)
 95     at scala.collection.mutable.HashSet.foreach(HashSet.scala:79)
 96     at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:804)
 97     at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:1658)
 98     at org.apache.spark.util.EventLoop.stop(EventLoop.scala:84)
 99     at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1581)
100     at org.apache.spark.SparkContext$$anonfun$stop$9.apply$mcV$sp(SparkContext.scala:1740)
101     at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1229)
102     at org.apache.spark.SparkContext.stop(SparkContext.scala:1739)
103     at org.apache.spark.SparkContext$$anonfun$3.apply$mcV$sp(SparkContext.scala:596)
104     at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:267)
105     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:239)
106     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:239)
107     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:239)
108     at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1765)
109     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:239)
110     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:239)
111     at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:239)
112     at scala.util.Try$.apply(Try.scala:161)
113     at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:239)
114     at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:218)
115     at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:54)
116     at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
117     at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
118     at org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)
119     at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)
120     at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
121     at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
122     at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
123     at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)
124     at org.apache.spark.examples.SparkPi$.main(SparkPi.scala:36)
125     at org.apache.spark.examples.SparkPi.main(SparkPi.scala)
126     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
127     at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
128     at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
129     at java.lang.reflect.Method.invoke(Method.java:606)
130     at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
131     at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
132     at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
133     at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
134     at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
135 ^C18/01/02 19:48:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
136 ^C^C^C^C^C
137 18/01/02 19:48:07 WARN NettyRpcEndpointRef: Error sending message [message = RemoveExecutor(0,Command exited with code 1)] in 1 attempts
138 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
139     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
140     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
141     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
142     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
143     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
144     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
145     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
146     at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.removeExecutor(CoarseGrainedSchedulerBackend.scala:359)
147     at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.executorRemoved(SparkDeploySchedulerBackend.scala:144)
148     at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(AppClient.scala:186)
149     at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:116)
150     at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:204)
151     at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
152     at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:215)
153     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
154     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
155     at java.lang.Thread.run(Thread.java:745)
156 Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
157     at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
158     at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
159     at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
160     at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
161     at scala.concurrent.Await$.result(package.scala:107)
162     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
163     ... 12 more
164 ^C^C^C^C^C^C^C^C^C
165 
166 
167 ^C^C^C^C^C^C^C^C^C^C^C18/01/02 19:48:16 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
168 ^C^C^C^C^C^C^C^C^C^C18/01/02 19:48:31 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
169 18/01/02 19:48:46 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
170 18/01/02 19:49:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
171 18/01/02 19:49:16 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
172 18/01/02 19:49:31 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
173 18/01/02 19:49:46 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
174 18/01/02 19:49:58 WARN NettyRpcEndpointRef: Error sending message [message = StopExecutors] in 1 attempts
175 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
176     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
177     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
178     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
179     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
180     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
181     at scala.util.Try$.apply(Try.scala:161)
182     at scala.util.Failure.recover(Try.scala:185)
183     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
184     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
185     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
186     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
187     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
188     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
189     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
190     at scala.concurrent.Promise$class.complete(Promise.scala:55)
191     at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
192     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
193     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
194     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
195     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
196     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
197     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
198     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
199     at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
200     at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
201     at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
202     at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
203     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
204     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
205     at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
206     at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
207     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241)
208     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
209     at java.util.concurrent.FutureTask.run(FutureTask.java:262)
210     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
211     at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
212     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
213     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
214     at java.lang.Thread.run(Thread.java:745)
215 Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
216     at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242)
217     ... 7 more
218 18/01/02 19:50:01 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
219 18/01/02 19:50:10 WARN NettyRpcEndpointRef: Error sending message [message = RemoveExecutor(0,Command exited with code 1)] in 2 attempts
220 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
221     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
222     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
223     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
224     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
225     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
226     at scala.util.Try$.apply(Try.scala:161)
227     at scala.util.Failure.recover(Try.scala:185)
228     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
229     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
230     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
231     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
232     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
233     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
234     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
235     at scala.concurrent.Promise$class.complete(Promise.scala:55)
236     at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
237     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
238     at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
239     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
240     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
241     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
242     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
243     at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
244     at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
245     at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
246     at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
247     at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
248     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
249     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
250     at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
251     at scala.concurrent.impl.Promise$DefaultPromise.t

以上是关于Spark入门,概述,部署,以及学习(Spark是一种快速通用可扩展的大数据分析引擎)的主要内容,如果未能解决你的问题,请参考以下文章

大数据Spark入门以及集群搭建

spark概述和安装部署

Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装

Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装

Spark入门实战系列--2.Spark编译与部署(上)--基础环境搭建

spark快速入门-------spark概述及安装配置