1. 变量和构造方法
private final int capacity; // 容量(最大节点个数),默认Integer.MAX_VALUE
private final AtomicInteger count = new AtomicInteger(); // 当前节点个数
transient Node<E> head; // 队列头结点
private transient Node<E> last; // 队列尾节点
private final ReentrantLock takeLock = new ReentrantLock(); // 消费锁
private final Condition notEmpty = takeLock.newCondition(); // 队列非空
private final ReentrantLock putLock = new ReentrantLock(); // 生产锁
private final Condition notFull = putLock.newCondition(); // 队列非满
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null); // 添加队列初始头节点(last = head表示队列为空)
}
public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // 加生产锁
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity) // 当前节点个数超过容量
throw new IllegalStateException("Queue full");
enqueue(new Node<E>(e));
++n;
}
count.set(n);
} finally {
putLock.unlock(); // 释放生产锁
}
}
2. 生产(put、offer)
static class Node<E> { // 队列节点
E item;
Node<E> next;
Node(E x) { item = x; }
}
private void enqueue(Node<E> node) { // 队列非满时,节点入队列(在队列尾部添加节点)
last = last.next = node;
}
private void signalNotEmpty() { // 唤醒等待非空的线程
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly(); // 加生产锁
try {
while (count.get() == capacity) { // 队列满
notFull.await(); // 等待队列非满
}
enqueue(node); // node入队列
c = count.getAndIncrement();
if (c + 1 < capacity) // node入队列后,队列非满
notFull.signal(); // 唤醒等待队列非满的线程
} finally {
putLock.unlock(); // 释放生产锁
}
if (c == 0) // node入队列前,队列为空
signalNotEmpty(); // 唤醒等待非空的节点
}
public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly(); // 加生产锁
try {
while (count.get() == capacity) { // 队列满
if (nanos <= 0) // 超时(awaitNanos可能已被signal,但在SyncQueue中排队等锁时超时,见ReentrantLock)
return false;
nanos = notFull.awaitNanos(nanos); // 等待队列非满(在nanos时间内)
}
enqueue(new Node<E>(e)); // new Node入队列
c = count.getAndIncrement();
if (c + 1 < capacity) // new Node入队列后,队列非满
notFull.signal(); // 唤醒等待队列非满的线程
} finally {
putLock.unlock(); // 释放生产锁
}
if (c == 0) // new Node入队列前,队列为空
signalNotEmpty(); // 唤醒等待
return true;
}
3. 消费(take、poll)
private E dequeue() { // 队列非空时,节点出队列(移除head.next)
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
private void signalNotFull() { // 唤醒等待非满的线程
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly(); // 加消费锁
try {
while (count.get() == 0) { // 队列空
notEmpty.await(); // 等待队列非空
}
x = dequeue(); // head.next出队列
c = count.getAndDecrement();
if (c > 1) // head.next出队列后,队列非空
notEmpty.signal(); // 唤醒等待队列非空的线程
} finally {
takeLock.unlock(); // 释放消费锁
}
if (c == capacity) // head.next出队列前,队列已满
signalNotFull(); // 唤醒等待队列非满的线程
return x;
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly(); // 加消费锁
try {
while (count.get() == 0) { // 队列空
if (nanos <= 0) // 超时
return null;
nanos = notEmpty.awaitNanos(nanos); // 等待队列非空
}
x = dequeue(); // head.next出队列
c = count.getAndDecrement();
if (c > 1) // head.next出队列后,队列非空
notEmpty.signal(); // 唤醒等待队列非空的线程
} finally {
takeLock.unlock(); // 释放消费锁
}
if (c == capacity) // head.next出队列前,队列已满
signalNotFull(); // 唤醒等待队列非满的线程
return x;
}
4. 加全锁(remove)
void fullyLock() { // 加全锁(remove、contains、toArray、clear、Itr)
putLock.lock();
takeLock.lock();
}
void fullyUnlock() { // 释放全锁
takeLock.unlock();
putLock.unlock();
}
void unlink(Node<E> p, Node<E> trail) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity) // 移除节点前,队列已满
notFull.signal(); // 唤醒等待队列非满的线程
}
public boolean remove(Object o) { // 删除节点
if (o == null) return false;
fullyLock(); // 加全锁
try {
for (Node<E> trail = head, p = trail.next; p != null; trail = p, p = p.next) { // 遍历队列(链表),p为当前节点,trai为p前置节点
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock(); // 释放全锁
}
}