C#怎么来判断2张图片相似度

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C#怎么来判断2张图片相似度相关的知识,希望对你有一定的参考价值。

很麻烦,而且计算量很大,这个属于人工智能的范畴。

如果这“两张相似图片”可以规定很多前提,比如相同分辨率,黑白,简单几何图形。。。那么可以用基本的算法去算一下“相似度”, 也就是楼上说的,读取两张照片的像素点,然后遍历去对比灰度差值。这些有很多现成的算法,也有很多网站提供这方面的计算(直接调用API即可),但是只能得出数字化的“相似度”。


如果你要的就是两张图片像素点之间的差异,那么就去找算法即可实现。

看一参考这个网站:www.aforgenet.com 这个是国外比较知名的图像处理的网站。


但是,两张图片如果尺寸不一呢? 如果比例不一样呢? 如果有留白呢?彩色的呢? 

所以目前最成熟的编程算法也就是识别一下字母和数字(比如谷歌可以识别照片上的门牌号和街道号),人脸识别也只是拿几个标本部位来大致判断相似度(眼睛的大小,鼻梁的高度,脸颊的宽瘦和比例), 以人眼的标准完整的去比较两张图片是否一样是很难的,目前应该还没有这方面成熟的技术。

参考技术A 读取像素, 求像素差值, 如果需要旋转,要先做旋转处理

图片相似度判断

参考技术A 1. https://zhuanlan.zhihu.com/p/68215900
为了得到两张相似的图片,在这里通过以下几种简单的计算方式来计算图片的相似度:
直方图计算图片的相似度
通过哈希值,汉明距离计算
通过图片的余弦距离计算
通过图片结构度量计算

二、哈希算法计算图片的相似度
图像指纹:

图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。

汉明距离:

假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1。简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。

感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。

几种hash值的比较:

aHash:平均值哈希。速度比较快,但是常常不太精确。
pHash:感知哈希。精确度比较高,但是速度方面较差一些。
dHash:差异值哈希。精确度较高,且速度也非常快

该算法是基于比较灰度图每个像素与平均值来实现。

aHash的hanming距离步骤:

先将图片压缩成8*8的小图
将图片转化为灰度图
计算图片的Hash值,这里的hash值是64位,或者是32位01字符串
将上面的hash值转换为16位的
通过hash值来计算汉明距离

def ahash(image):
# 将图片缩放为8*8的
image = cv2.resize(image, (8, 8), interpolation=cv2.INTER_CUBIC)
# 将图片转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# s为像素和初始灰度值,hash_str为哈希值初始值
s = 0
# 遍历像素累加和
for i in range(8):
for j in range(8):
s = s + gray[i, j]
# 计算像素平均值
avg = s / 64
# 灰度大于平均值为1相反为0,得到图片的平均哈希值,此时得到的hash值为64位的01字符串
ahash_str = ''
for i in range(8):
for j in range(8):
if gray[i, j] > avg:
ahash_str = ahash_str + '1'
else:
ahash_str = ahash_str + '0'
result = ''
for i in range(0, 64, 4):
result += ''.join('%x' % int(ahash_str[i: i + 4], 2))
# print("ahash值:",result)
return result
2.感知哈希算法(pHash):

均值哈希虽然简单,但是受均值影响大。如果对图像进行伽马校正或者进行直方图均值化都会影响均值,从而影响哈希值的计算。所以就有人提出更健壮的方法,通过离散余弦(DCT)进行低频提取。

离散余弦变换(DCT)是种图像压缩算法,它将图像从像素域变换到频率域。然后一般图像都存在很多冗余和相关性的,所以转换到频率域之后,只有很少的一部分频率分量的系数才不为0,大部分系数都为0(或者说接近于0)。Phash哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法。

pHash的hanming距离步骤:

缩小图片:32 * 32是一个较好的大小,这样方便DCT计算转化为灰度图
计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换
缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
计算平均值:计算缩小DCT后的所有像素点的平均值。
进一步减小DCT:大于平均值记录为1,反之记录为0.
得到信息指纹:组合64个信息位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。

def phash(path):
# 加载并调整图片为32*32的灰度图片
img = cv2.imread(path)
img1 = cv2.resize(img, (32, 32),cv2.COLOR_RGB2GRAY)

# 创建二维列表
h, w = img.shape[:2]
vis0 = np.zeros((h, w), np.float32)
vis0[:h, :w] = img1

# DCT二维变换
# 离散余弦变换,得到dct系数矩阵
img_dct = cv2.dct(cv2.dct(vis0))
img_dct.resize(8,8)
# 把list变成一维list
img_list = np.array().flatten(img_dct.tolist())
# 计算均值
img_mean = cv2.mean(img_list)
avg_list = ['0' if i<img_mean else '1' for i in img_list]
return ''.join(['%x' % int(''.join(avg_list[x:x+4]),2) for x in range(0,64,4)])

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

dHash的hanming距离步骤:

先将图片压缩成9*8的小图,有72个像素点
将图片转化为灰度图
计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值,或者是32位01字符串。
获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.
通过hash值来计算汉明距离

def dhash(image):
# 将图片转化为8*8
image = cv2.resize(image, (9, 8), interpolation=cv2.INTER_CUBIC)
# 将图片转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
dhash_str = ''
for i in range(8):
for j in range(8):
if gray[i, j] > gray[i, j + 1]:
dhash_str = dhash_str + '1'
else:
dhash_str = dhash_str + '0'
result = ''
for i in range(0, 64, 4):
result += ''.join('%x' % int(dhash_str[i: i + 4], 2))
# print("dhash值",result)
return result

def campHash(hash1, hash2):
n = 0
# hash长度不同返回-1,此时不能比较
if len(hash1) != len(hash2):
return -1
# 如果hash长度相同遍历长度
for i in range(len(hash1)):
if hash1[i] != hash2[i]:
n = n + 1
return n

以上是关于C#怎么来判断2张图片相似度的主要内容,如果未能解决你的问题,请参考以下文章

图片相似度判断

有啥可以对比两张图片得出相似度的软件。

Java 如何对比两张图片的相似度

如何通过 C# 比较两幅图片的相似度?

基于CNN的人脸相似度检测

比较两张相似的图片得到相似度值