Hadoop学习笔记—15.HBase框架学习(基础实践篇)

Posted 初见微凉i

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop学习笔记—15.HBase框架学习(基础实践篇)相关的知识,希望对你有一定的参考价值。

一、HBase的安装配置

1.1 伪分布模式安装

  伪分布模式安装即在一台计算机上部署HBase的各个角色,HMaster、HRegionServer以及ZooKeeper都在一台计算机上来模拟。

  首先,准备好HBase的安装包,我这里使用的是HBase-0.94.7的版本,已经上传至百度网盘之中(URL:http://pan.baidu.com/s/1pJ3HTY7

  (1)通过FTP将hbase的安装包拷贝到虚拟机hadoop-master中,并执行一系列操作:解压缩、重命名、设置环境变量

  ①解压缩:tar -zvxf hbase-0.94.7-security.tar.gz

  ②重命名:mv hbase-94.7-security hbase

  ③设置环境变量:vim /etc/profile,增加内容如下,修改后重新生效:source /etc/profile

export HBASE_HOME=/usr/local/hbase

export PATH=.:$HADOOP_HOME/bin:$HBASE_HOME/bin:$ZOOKEEPER_HOME/bin:$JAVA_HOME/bin:$PATH

  (2)进入hbase/conf目录下,修改hbase-env.sh文件:

export JAVA_HOME=/usr/local/jdk
export HBASE_MANAGES_ZK=true #告诉HBase使用它自己的zookeeper实例,分布式模式下需要设置为false

  (3)在hbase/conf目录下,继续修改hbase-site.xml文件:

<property>
  <name>hbase.rootdir</name>
  <value>hdfs://hadoop-master:9000/hbase</value>
</property>
<property>
  <name>hbase.cluster.distributed</name>
  <value>true</value>
</property>
<property>
  <name>hbase.zookeeper.quorum</name>
  <value>hadoop-master</value>
</property>
<property>
  <name>dfs.replication</name>
  <value>1</value>
</property>

  (4)【可选步凑】修改regionservers文件,将localhost改为主机名:hadoop-master

  (5)启动HBase:start-hbase.sh

PS:由上一篇可知,HBase是建立在Hadoop HDFS之上的,因此在启动HBase之前要确保已经启动了Hadoop,启动Hadoop的命令是:start-all.sh

  (6)验证是否启动HBase:jps

  

  由上图发现,多了三个java进程:HMaster、HRegionServer以及HQuorumPeer

  还可以通过访问HBase的Web接口查看:http://hadoop-master:60010

1.2 分布式模式安装

  本次安装在1.1节的伪分布模式的基础上进行修改搭建分布式模式,本次的集群实验环境结构如下图所示:

  由上图可知,HMaster角色是192.168.80.100(主机名:hadoop-master),而两个HRegionServer角色则是两台192.168.80.101(主机名:hadoop-slave1)和192.168.80.102(主机名:hadoop-slave2)组成的。

  (1)修改hadoop-master服务器上的的几个关键配置文件:

  ①修改hbase/conf/hbase-env.sh:将最后一行修改为如下内容

export HBASE_MANAGES_ZK=false  #不使用HBase自带的zookeeper实例

  ②修改hbase/conf/regionservers:将原来的hadoop-master改为如下内容

hadoop-slave1

hadoop-slave2

  (2)将hadoop-master上的hbase文件夹与/etc/profile配置文件整体复制到hadoop-slave1与hadoop-slave2中:

scp -r /usr/local/hbase hadoop-slave1:/usr/local/  

scp -r /usr/local/hbase hadoop-slave2:/usr/local/

scp /etc/profile hadoop-slave1:/etc/

scp /etc/profile hadoop-slave2:/etc/

  (3)在hadoop-slave1与hadoop-slave2中使配置文件生效:

source /etc/profile

  (4)在hadoop-master中启动Hadoop、Zookeeper与HBase:(注意先后顺序)

start-all.sh

zkServer.sh start

start-hbase.sh

  (5)在HBase的Web接口中查看Hbase集群状态:

二、HBase Shell基本命令

2.1 DDL:创建与删除表

  (1)创建表:

>create \'users\',\'user_id\',\'address\',\'info\'

#这里创建了一张表users,有三个列族user_id,address,info

  获取表users的具体描述:

>describe \'users\'

  (2)列出所有表:

>list

  

  (3)删除表:在HBase中删除表需要两步,首先disable,其次drop

>disable \'users\'

>drop \'users\'

2.2 DML:增删查改

  (1)增加记录:put

>put \'users\',\'xiaoming\',\'info:age\',\'24\';

>put \'users\',\'xiaoming\',\'info:birthday\',\'1987-06-17\';

>put \'users\',\'xiaoming\',\'info:company\',\'alibaba\';

>put \'users\',\'xiaoming\',\'address:contry\',\'china\';

>put \'users\',\'xiaoming\',\'address:province\',\'zhejiang\';

>put \'users\',\'xiaoming\',\'address:city\',\'hangzhou\';

  (2)扫描users表的所有记录:scan

>scan \'users\'

  (3)获取一条记录

  ①取得一个id(row_key)的所有数据

>get \'users\',\'xiaoming\'

  ②获取一个id的一个列族的所有数据

>get \'users\',\'xiaoming\',\'info\'

  ③获取一个id,一个列族中一个列的所有数据

>get \'users\',\'xiaoming\',\'info:age\'

  (4)更新一条记录:依然put

  例如:更新users表中小明的年龄为29

>put \'users\',\'xiaoming\',\'info:age\' ,\'29\'

>get \'users\',\'xiaoming\',\'info:age

  (5)删除记录:delete与deleteall

  ①删除xiaoming的值的\'info:age\'字段

>delete \'users\',\'xiaoming\',\'info:age\'

  ②删除xiaoming的整行信息

>deleteall \'users\',\'xiaoming\'

2.3 Other:其他几个比较有用的命令

  (1)count:统计行数

>count \'users\'

  (2)truncate:清空指定表

>truncate \'users\'

三、HBase Java API操作

3.1 预备工作

  (1)导入HBase的项目jar包

  (2)导入HBase/lib下的所有依赖jar包

3.2 HBase Java开发必备:获取配置

复制代码
    /*
     * 获取HBase配置
     */
    private static Configuration getConfiguration()
    {
        Configuration conf = HBaseConfiguration.create();
        conf.set("hbase.rootdir","hdfs://hadoop-master:9000/hbase");
        //使用eclipse时必须添加这个,否则无法定位
        conf.set("hbase.zookeeper.quorum","hadoop-master");
        
        return conf;
    }    
复制代码

3.3 使用HBaseAdmin进行DDL操作

  (1)创建表

复制代码
   /*
     * 创建表
     */
    private static void createTable()
            throws IOException {
        HBaseAdmin admin = new HBaseAdmin(getConfiguration());
        if (admin.tableExists(TABLE_NAME)) {
            System.out.println("The table is existed!");
        }else{
            HTableDescriptor tableDesc = new HTableDescriptor(TABLE_NAME);
            tableDesc.addFamily(new HColumnDescriptor(FAMILY_NAME));
            admin.createTable(tableDesc);
            System.out.println("Create table success!");
        }
    }
复制代码

  (2)删除表

复制代码
    /*
     * 删除表
     */
    private static void dropTable(String tableName)
            throws IOException {        
        HBaseAdmin admin = new HBaseAdmin(getConfiguration());
        if(admin.tableExists(tableName)){
            try {
              admin.disableTable(tableName);
              admin.deleteTable(tableName);
            } catch (IOException e) {
              e.printStackTrace();
              System.out.println("Delete "+tableName+" failed!");
            }
        }
        System.out.println("Delete "+tableName+" success!");
    }
复制代码

3.4 使用HTable进行DML操作

  (1)新增记录

复制代码
    public static void putRecord(String tableName, String row, 
            String columnFamily, String column, String data) 
                    throws IOException{
        HTable table = new HTable(getConfiguration(), tableName);
        Put p1 = new Put(Bytes.toBytes(row));
        p1.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column),     Bytes.toBytes(data));
        table.put(p1);
        System.out.println("put\'"+row+"\',"+columnFamily+":"+column+"\',\'"+data+"\'");
    }
复制代码

  (2)读取记录

    public static void getRecord(String tableName, String row) throws IOException{
        HTable table = new HTable(getConfiguration(), tableName);
        Get get = new Get(Bytes.toBytes(row));
        Result result = table.get(get);
        System.out.println("Get: "+result);
    }

  (3)全表扫描

复制代码
    public static void scan(String tableName) throws IOException{
      HTable table = new HTable(getConfiguration(), tableName);
      Scan scan = new Scan();
      ResultScanner scanner = table.getScanner(scan);
      for (Result result : scanner) {
          System.out.println("Scan: "+result);
      }
    }
复制代码

3.5 API实战:详单入库

   结合本笔记第五篇《自定义类型处理手机上网日志》的手机上网日志为背景,我们要做的就是将日志通过MapReduce导入到HBase中进行存储。该日志的数据结构定义如下图所示:(该文件的下载地址为:http://pan.baidu.com/s/1dDzqHWX

log

  (1)在HBase中通过Shell创建一张表:wlan_log

> create \'wlan_log\',\'cf\'

  这里为了简单定义,之定义了一个列族cf

  (2)在ecplise中新建一个类:BatchImportJob,该类的代码如下所示:

 View Code

  通过执行后,在HBase中通过Shell命令(list)查看导入结果:

  (3)在eclipse中新建一个类:MobileLogQueryApp,对已经存储的wlan_log进行查询的Java开发,该类的代码如下所示:

 View Code

  这里主要进行了两个查询操作:按指定手机号码查询 和 按指定手机号码网段区间查询,执行结果如下所示:

参考资料

  (1)吴超,《Hadoop深入浅出》:http://www.superwu.cn

  (2)新城主力唱好,《HBase Java API》:http://www.cnblogs.com/NicholasLee/archive/2012/09/13/2683432.html

原文链接:http://www.cnblogs.com/edisonchou/

以上是关于Hadoop学习笔记—15.HBase框架学习(基础实践篇)的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop学习笔记:MapReduce框架详解

Hadoop学习笔记—18.Sqoop框架学习

Hadoop学习笔记—17.Hive框架学习

Big Data - Hadoop - MapReducehadoop 学习笔记:MapReduce框架详解

Hadoop学习笔记—16.Pig框架学习

Hadoop学习笔记—19.Flume框架学习