7.+利用numpy的random模块,创建一个4行5列的数组,各元素的值为0-100的随?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了7.+利用numpy的random模块,创建一个4行5列的数组,各元素的值为0-100的随?相关的知识,希望对你有一定的参考价值。
参考技术A 1、使用pip在cmd安装库numpy(安装python时需要勾选pip选项)pip install numpy
2、编写python程序,代码如下(这段代码没有缩进)
import numpy as np
# 创建一个4行5列的数组,各元素的值为0-100的随机值
arr = np.random.randint(0, 101, size=(4, 5))
print(arr) 参考技术B import numpy as np
arr = np.random.randint(0, 101, size=(4, 5))
print(arr)
0929课堂小结
目录
random模块
常用于生成随机数
import random
# 大于0且小于1之间的小数
print(random.random())
# 0.9704044132949314
# 大于等于1且小于等于3之间的整数
print(random.randint(1, 3))
# 2
# 大于等于1且小于3之间的整数
print(random.randrange(1, 3))
# 1
# 大于1小于3的小数,如1.927109612082716
print(random.uniform(1, 3))
# 2.9017299775297385
# 列表内的任意一个元素,即1或者‘23’或者[4,5]
print(random.choice([1, '23', [4, 5]]))
# 23
# random.sample([], n),列表元素任意n个元素的组合,示例n=2
print(random.sample([1, '23', [4, 5]], 2))
# ['23', [4, 5]]
lis = [1, 3, 5, 7, 9]
# 打乱l的顺序,相当于"洗牌"
random.shuffle(lis)
print(lis)
# [1, 7, 9, 5, 3]
numpy模块
常用于数据分析,对二维数组,即矩阵进行科学运算
创建numpy数组
import numpy as np
# 创建一维的ndarray对象
arr = np.array([1, 2, 3])
print(arr, type(arr))
# [1 2 3] <class 'numpy.ndarray'>
# 创建二维的ndarray对象 最常用**
print(np.array([[1, 2, 3], [4, 5, 6]]))
# [[1 2 3]
# [4 5 6]]
# 创建三维的ndarray对象
print(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
# [[1 2 3]
# [4 5 6]
# [7 8 9]]
numpy数组的常用属性
dtype数据类型:bool_, int(8,16,32,64) , float(16,32,64)
# 新建numpy数组,数据类型为float32
arr = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
print(arr)
# [[1. 2. 3.]
# [4. 5. 6.]]
dtype 查看数组元素的数据类型
print(arr.dtype)
# float32
astype:数据类型转换
arr = arr.astype(np.int32)
print(arr.dtype)
print(arr)
# int32
# [[1 2 3]
# [4 5 6]]
T:数组的转置(行列互换)
print(arr.T)
# [[1. 4.]
# [2. 5.]
# [3. 6.]]
size:查看数组元素的个数
print(arr.size)
# 6
ndim:查看数组的维数
print(arr.ndim)
# 2
shape:查看数组的维度大小(行,列)元组形式
print(arr.shape)
# (2, 3)
获取numpy二数组行列数
获取numpy数组的行和列构成的数组
# 新建numpy二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
[[1 2 3]
[4 5 6]]
print(arr.shape)
# (2, 3)
获取numpy数组的行
# 获取numpy数组的行
print(arr.shape[0])
# 2
获取numpy数组的列
print(arr.shape[1])
# 3
切割numpy数组
切分numpy数组类似于列表的切割,但是与列表的切割不同的是,numpy数组的切割涉及到行和列的切割,但是两者切割的方式都是从索引0开始,并且取头不取尾。
取所有元素
# 新建二维数组
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
'''[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]'''
print(arr[:, :]) # [行,列]
'''[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]'''
取第一行的所有元素
print(arr[:1, :])
# [[1 2 3 4]]
print(arr[0, [0, 1, 2, 3]])
# [1 2 3 4]
取第一列的所有元素
print(arr[:, :1])
# [[1]
# [5]
# [9]]
print(arr[(0, 1, 2), 0])
# [1 5 9]
取第一行第一列的元素
print(arr[(0, 1, 2), 0])
# [1 5 9]
print(arr[0, 0])
# 1
取大于5的元素,返回一个数组
print(arr[arr > 5])
# [ 6 7 8 9 10 11 12]
numpy数组元素替换
取第一行的所有元素,并且让第一行的元素都为0
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
'''[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]'''
arr1 = arr.copy()
arr1[:1, :] = 0
print(arr1)
'''[[ 0 0 0 0]
[ 5 6 7 8]
[ 9 10 11 12]]'''
取所有大于5的元素,并且让大于5的元素为0
arr2 = arr.copy()
arr2[arr > 5] = 0
print(arr2)
'''[[1 2 3 4]
[5 0 0 0]
[0 0 0 0]]'''
对numpy数组清零
arr3 = arr.copy()
arr3[:, :] = 0
print(arr3)
'''[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]'''
numpy数组的合并
# 新建两个二维数组
arr1 = np.array([[1, 2], [3, 4], [5, 6]])
print(arr1)
'''[[1 2]
[3 4]
[5 6]]'''
arr2 = np.array([[7, 8], [9, 10], [11, 12]])
print(arr2)
'''[[ 7 8]
[ 9 10]
[11 12]]'''
合并两个numpy数组的行
# 注意使用hstack()方法合并numpy数组,numpy数组应该有相同的行
print(np.hstack((arr1, arr2)))
'''[[ 1 2 7 8]
[ 3 4 9 10]
[ 5 6 11 12]]'''
合并两个numpy数组的列
# 注意使用vstack()方法合并numpy数组,numpy数组应该有相同的列
print(np.vstack((arr1, arr2)))
'''[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]
[11 12]]'''
合并两个numpy数组
# 合并两个numpy数组,其中axis=1表示合并两个numpy数组的行
print(np.concatenate((arr1, arr2), axis=1))
'''[[ 1 2 7 8]
[ 3 4 9 10]
[ 5 6 11 12]]'''
# 合并两个numpy数组,其中axis=0表示合并两个numpy数组的列
print(np.concatenate((arr1, arr2), axis=0))
'''[[ 1 2]
[ 3 4]
[ 5 6]
[ 7 8]
[ 9 10]
[11 12]]'''
numpy常用函数
array():将列表转换为数组,可选择显式指定dtype
arr = np.array([1, 2, 3]) # 创建一维数组
print(arr)
# [1 2 3]
arange():range的numpy版,支持浮点数
# 构造0-9的ndarray数组 [0 1 2 3 4 5 6 7 8 9]
print(np.arange(10))
# 构造1-4的ndarray数组 [1 2 3 4]
print(np.arange(1, 5))
# 构造1-19且步长为2的ndarray数组 [ 1 3 5 7 9 11 13 15 17 19]
print(np.arange(1, 20, 2))
linspace():类似arange(),第三个参数为数组长度
# 构造一个等差数列,取头也取尾,从0取到20,取5个数
print(np.linspace(0, 20, 5))
# [ 0. 5. 10. 15. 20.]
# 构造一个数列,取头也取尾,从1取到100,取10个数
print(np.linspace(1, 100, 10))
# [ 1. 12. 23. 34. 45. 56. 67. 78. 89. 100.]
zeros():根据指定形状和dtype创建全0数组
# 创建一个2*3的全0数组
print(np.ones((2, 3)))
'''[[1. 1. 1.]
[1. 1. 1.]]'''
ones():根据指定形状和dtype创建全1数组
# 创建一个2*3的全1数组
print(np.zeros((2, 3)))
'''[[0. 0. 0.]
[0. 0. 0.]]'''
eye():创建单位矩阵
# 构造3个主元的单位numpy数组
print(np.eye(3, 3))
'''[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]'''
empty():创建一个元素随机的数组
# 构造一个4*4的随机numpy数组,里面的元素是随机生成的
print(np.empty((4, 4)))
'''[[6.23042070e-307 1.42417221e-306 7.56595733e-307 3.56043054e-307]
[7.56595733e-307 1.00131040e-307 8.34426464e-308 6.23038336e-307]
[1.42419394e-306 6.23059726e-307 1.06810268e-306 6.89809904e-307]
[1.42420481e-306 1.24612013e-306 8.01091099e-307 9.34603679e-307]]'''
reshape():重塑形状
arr1 = np.zeros((1, 12))
print(arr1.reshape((3, 4)))
'''[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]'''
matplotlib模块
常用于直方图、条形图、折线图、饼图等统计图的绘制
基本的核心使用方法
除去各种文字、格式的修饰,最核心的代码如下:
from matplotlib import pyplot as plt # 导入模块
clas = [1,2,3,4]
students = [50, 55, 45, 60]
plt.bar(clas,students) # bar是条形图,可换成其他图形关键字,生成(行,列)
plt.show()
下面的都是添加了花里胡哨的装饰和文字,但核心代码没有什么太大改变
条形图
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 设置字体 路径为电脑内中文的ttc格式字体
font = FontProperties(fname='C:WindowsFontssimsun.ttc')
# 修改背景为条纹
plt.style.use('ggplot')
classes = ['3班', '4班', '5班', '6班']
classes_index = range(len(classes))
student_amounts = [66, 55, 45, 70]
# 画布设置
fig = plt.figure()
# 1,1,1表示一张画布切割成1行1列共一张图的第1个;2,2,1表示一张画布切割成2行2列共4张图的第一个(左上角)
ax1 = fig.add_subplot(1, 1, 1)
# 合成条形图,color参数设置了颜色
ax1.bar(classes_index, student_amounts, color='r')
# 设置行标题 字体 字体大小
plt.xlabel('班级', fontproperties=font, fontsize=15)
# 设置列标题 字体 字体大小
plt.ylabel('学生人数', fontproperties=font, fontsize=15)
# 设置画布大标题 字体 字体大小
plt.title('班级-学生人数', fontproperties=font, fontsize=20)
plt.show()
直方图
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 设置字体 路径为电脑内中文的ttc格式字体
font = FontProperties(fname='C:WindowsFontssimsun.ttc')
# 修改背景为条纹
plt.style.use('ggplot')
mu1, mu2, sigma = 50, 100, 10
# 构造均值为50的符合正态分布的数据
x1 = mu1 + sigma * np.random.randn(10000)
# 构造均值为100的符合正态分布的数据
x2 = mu2 + sigma * np.random.randn(10000)
# 设置一张画布
fig = plt.figure()
# 将画布分为1行2列 把第1列给ax1
ax1 = fig.add_subplot(121)
# bins=50表示每个变量的值分成50份,即会有50根柱子 color设置颜色
ax1.hist(x1, bins=50, color='darkgreen')
# 将画布分为1行2列 把第2列给ax2
ax2 = fig.add_subplot(122)
# bins=50表示每个变量的值分成50份,即会有50根柱子 color设置颜色
ax2.hist(x2, bins=50, color='orange')
# 设置画布大标题
fig.suptitle('两个正态分布', fontproperties=font, fontweight='bold', fontsize=15)
# 设置第一列小标题
ax1.set_title('绿色的正态分布', fontproperties=font)
# 设置第二列小标题
ax2.set_title('橙色的正态分布', fontproperties=font)
plt.show()
折线图
import numpy as np
from numpy.random import randn
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 设置字体 路径为电脑内中文的ttc格式字体
font = FontProperties(fname='C:WindowsFontssimsun.ttc')
# 修改背景为条纹
plt.style.use('ggplot')
# 固定随机数
np.random.seed(1)
# 使用numpy的累加和,保证数据取值范围不会在(0,1)内波动
plot_data1 = randn(40).cumsum()
plot_data2 = randn(40).cumsum()
plot_data3 = randn(40).cumsum()
plot_data4 = randn(40).cumsum()
# 设置四条折线
# marker:折线中数据点的形式, color:折线的颜色, linestyle:折线的形式, label:折线的标题'
plt.plot(plot_data1, marker='o', color='red', linestyle='-', label='红实线')
plt.plot(plot_data2, marker='x', color='orange', linestyle='--', label='橙虚线')
plt.plot(plot_data3, marker='*', color='yellow', linestyle='-.', label='黄点线')
plt.plot(plot_data4, marker='s', color='green', linestyle=':', label='绿点图')
# loc='best'给label自动选择最好的位置 loc='left/right' label靠左/靠右
plt.legend(loc='best', prop=font)
plt.show()
散点图+直线图
import numpy as np
from numpy.random import randn
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 设置字体 路径为电脑内中文的ttc格式字体
font = FontProperties(fname='C:WindowsFontssimsun.ttc')
# 修改背景为条纹
plt.style.use('ggplot')
# 生成1-20 步长为1的数组
x = np.arange(1, 20, 1)
# 拟合一条水平散点线
np.random.seed(1)
y_linear = x + 10 * np.random.randn(19)
# 拟合一条x2的散点线
y_quad = x**2 + 10 * np.random.randn(19)
# 生成一张画布
fig = plt.figure()
# 将画布分为2行2列 把第一行第1列给ax1
ax1 = fig.add_subplot(221)
# s是散点大小
plt.scatter(x, y_linear, s=30, color='r', label='蓝点')
plt.scatter(x, y_quad, s=100, color='b', label='红点')
# 将画布分为2行2列 把第二行第2列给ax2
ax2 = fig.add_subplot(224)
plt.plot(x, y_linear, color='r')
plt.plot(x, y_quad, color='b')
# 限制x轴和y轴的范围取值
plt.xlim(min(x) - 1, max(x) + 1)
plt.ylim(min(y_quad) - 10, max(y_quad) + 10)
# 设置画布大标题
fig.suptitle('散点图+直线图', fontproperties=font, fontsize=20)
# 设置小标题
ax1.set_title('散点图', fontproperties=font)
# 单独设置label的字体
ax1.legend(prop=font)
# 设置小标题
ax2.set_title('直线图', fontproperties=font)
plt.show()
pandas模块
常用于文件存取操作,支持数据库(sql)、html、json、pickle、csv(txt、excel)、sas、stata、hdf等
import numpy as np
import pandas as pd
# pd从excel中读取 DataFrame数据类型
np.random.seed(10)
index = pd.date_range('2019-01-01', periods=6, freq='M')
print(index)
columns = ['c1', 'c2', 'c3', 'c4']
print(columns)
val = np.random.randn(6, 4)
print(val)
df = pd.DataFrame(index=index, columns=columns, data=val)
print(df)
# 保存文件,读出成文件
df.to_excel('date_c.xlsx')
# 读出文件
df = pd.read_excel('date_c.xlsx', index_col=[0])
print(df)
print(df.index)
print(df.columns)
print(df.values)
print(df[['c1', 'c2']])
# 按照index取值
# print(df['2019-01-31'])
print(df.loc['2019-01-31'])
print(df.loc['2019-01-31':'2019-05-31'])
# 按照values取值
print(df)
print(df.iloc[0, 0])
df.iloc[0, :] = 0
print(df)
以上是关于7.+利用numpy的random模块,创建一个4行5列的数组,各元素的值为0-100的随?的主要内容,如果未能解决你的问题,请参考以下文章