(译文)SQL与Mongodb聚合之前的对应关系

Posted 字节

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(译文)SQL与Mongodb聚合之前的对应关系相关的知识,希望对你有一定的参考价值。

SQL中的聚合函数和Mongodb中的管道相互对应的关系:

WHERE	             $match
GROUP BY	     $group
HAVING	             $match
SELECT	             $project
ORDER BY	     $sort
LIMIT	             $limit
SUM()	             $sum
COUNT()	             $sum
join	             $lookup

例子:

先创建文档,填充数据

/* 0 */
{
  "_id" : ObjectId("5812b447311bb4272016496a"),
  "cust_id" : "abc123",
  "ord_date" : ISODate("2012-11-02T17:04:11.102Z"),
  "status" : "A",
  "price" : 50,
  "items" : [{
      "sku" : "xxx",
      "qty" : 25,
      "price" : 1
    }, {
      "sku" : "yyy",
      "qty" : 25,
      "price" : 1
    }]
}

/* 1 */
{
  "_id" : ObjectId("58131494311bb418b058fcba"),
  "cust_id" : "a",
  "ord_date" : ISODate("2012-11-02T17:04:11.102Z"),
  "status" : "B",
  "price" : 70,
  "items" : [{
      "sku" : "xxx",
      "qty" : 25,
      "price" : 1
    }, {
      "sku" : "yyy",
      "qty" : 25,
      "price" : 1
    }]
}

/* 2 */
{
  "_id" : ObjectId("581314b6311bb418b058fcbb"),
  "cust_id" : "ab",
  "ord_date" : ISODate("2012-11-02T17:04:11.102Z"),
  "status" : "E",
  "price" : 60,
  "items" : [{
      "sku" : "xxx",
      "qty" : 55,
      "price" : 1
    }, {
      "sku" : "yyy",
      "qty" : 25,
      "price" : 1
    }]
}

例1:

SQL:                                                               

SELECT COUNT(*) AS count  FROM orders

  

Mongodb:

db.orders.aggregate([
  {
    $group:{
          _id:null,
          count:{$sum:1}
        }
  }
])

 

例2:

SQL:

SELECT SUM(price) AS total FROM orders

Mongodb:

db.orders.aggregate(
         [
          {
            $group:

            {
            _id:null,
            total:{$sum:"$price"}
            }
          }
        ])

例3:

SQL:

SELECT cust_id,SUM(price) AS total FROM orders GROUP BY cust_id

Mongodb:

db.orders.aggregate([
            {
              $group:
                  {
                        _id:"$cust_id",
                    total:
                      {
                       $sum:"$price"
                      }
                  }
            },
            {

              $sort:
                {
                  total:1
                }
            }

          ])         

例4:

SQL:

SELECT cust_id, ord_date,SUM(price) AS total  FROM orders  GROUP BY cust_id, ord_date

Mongodb:

db.orders.aggregate([
{
    $group:
    {
      _id:
     {
       cust_id:"$cust_id",
       ord_date:
            {
            month:{$month:"$ord_date"},
            day:{$dayOfMonth:"$ord_date"},
            year:{$year:"$ord_date"}
            }
      },
      total:{$sum:"$price"}

     }
}	
])

 例5:

SQL:

SELECT cust_id,count(*) FROM orders GROUP BY cust_id  HAVING count(*) > 1

Mongodb:

db.orders.aggregate([
				{
					$group:{_id:"$cust_id",
					count:{$sum:1}
					}
				},
				{$match:{count:{$gt:1}}}

])

例6:

SQL:

SELECT cust_id,ord_date,SUM(price) AS total  FROM orders  GROUP BY cust_id,ord_date  HAVING total > 250

Mongodb:

db.orders.aggregate( [
   {
     $group: {
        _id: {
           cust_id: "$cust_id",
           ord_date: {
               month: { $month: "$ord_date" },
               day: { $dayOfMonth: "$ord_date" },
               year: { $year: "$ord_date"}
           }
        },
        total: { $sum: "$price" }
     }
   },
   { $match: { total: { $gt: 250 } } }
] )

例6:

SQL:

SELECT cust_id,SUM(price) as total FROM orders WHERE status = \'A\' GROUP BY cust_id

Mongodb:

db.orders.aggregate([
		{$match:{status:\'A\'}},
		{$group:{_id:"$cust_id",total:{$sum:"$price"}}}
])

例7:

SQL:

SELECT cust_id,SUM(price) as total FROM orders WHERE status = \'A\' GROUP BY cust_id HAVING total > 250

Mongodb:

db.orders.aggregate([
		{ $match: { status: \'A\' } },
		{$group:{_id:"$cust_id",total:{$sum:"$price"}}},
		{$match:{total:{$gt:250}}}
])

例8:

SQL:

SELECT cust_id,SUM(li.qty) as qty FROM orders o, order_lineitem li WHERE li.order_id = o.id GROUP BY cust_id

Mongodb:

$unwind的作用是将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值

假如我们的需求是统计每个items出现的次数

这个时候就需要用到先将$unwind items拆分,然后根据具体的items来做分组统计

db.orders.aggregate([
		{$unwind:"$items"},
		{$group:{_id:"$cust_id",qty:{$sum:"$items.qty"}}}
])

例9:  

SQL:

SELECT COUNT(*) FROM (SELECT cust_id,ord_date FROM orders GROUP BY cust_id,ord_date) as DerivedTable

Mongodb:

db.orders.aggregate([
			{$group:
				{	
					_id:{
						cust_id:"$cust_id",
						ord_date:{
							month:{$month:"$ord_date"},
							day:{$dayOfMonth:"$ord_date"},
							year:{$year:"$ord_date"}
						}
					}
				}
			},
			{
				$group:{
					_id:null,
					count:{$sum:1}
				}
			}
])

 格式要注意

db.orders.aggregate([

{$match:{}},                ----where
{$group:{ ----group
    _id:排序字段
    total:{聚合函数}
}},
{$match:{}} ----having
])

 

  

  

 

     

 

以上是关于(译文)SQL与Mongodb聚合之前的对应关系的主要内容,如果未能解决你的问题,请参考以下文章

mongoDB表与表的关系及聚合管道查询

mongoDB (mongoose增删改查聚合索引连接备份与恢复监控等等)

MongoDB查询和SQL查询的对应关系

[第16期] mongoDB 干货笔记(mongoose/增删改查/聚合/索引/连接/备份与恢复/监控等)

mongodb与mysql传统的关系数据库区别

MongoDB 聚合(管道与表达式)