一文搞懂Nginx限流,原来这么简单

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文搞懂Nginx限流,原来这么简单相关的知识,希望对你有一定的参考价值。

参考技术A

nginx现在已经是最火的负载均衡之一,在流量陡增的互联网面前,接口限流也是很有必要的,尤其是针对高并发的场景。Nginx的限流主要是两种方式:限制访问频率和限制并发连接数。

Nginx中我们使用 ngx_http_limit_req_module 模块来限制请求的访问频率,基于漏桶算法原理实现。接下来我们使用 nginx limit_req_zone 和 limit_req 两个指令,限制单个IP的请求处理速率。

语法: limit_req_zone key zone rate

按上面的配置在流量突然增大时,超出的请求将被拒绝,无法处理突发流量,那么在处理突发流量的时候,该怎么处理呢?Nginx提供了 burst 参数来解决突发流量的问题,并结合 nodelay 参数一起使用。burst 译为突发、爆发,表示在超过设定的处理速率后能额外处理的请求数。

burst=20 nodelay 表示这20个请求立马处理,不能延迟,相当于特事特办。不过,即使这20个突发请求立马处理结束,后续来了请求也不会立马处理。burst=20 相当于缓存队列中占了20个坑,即使请求被处理了,这20个位置这只能按 100ms一个来释放。这就达到了速率稳定,但突然流量也能正常处理的效果。

Nginx 的 ngx_http_limit_conn_module 模块提供了对资源连接数进行限制的功能,使用 limit_conn_zone 和 limit_conn 两个指令就可以了。

好了,以上几种限流方式,你都清楚了吗?

一文带你搞懂 API 网关,别给你的系统引入定时炸弹!



扫描下方二维码试读

一文带你搞懂 API 网关,别给你的系统引入定时炸弹!




前言

假设你正在开发一个电商网站,那么这里会涉及到很多后端的微服务,比如会员、商品、推荐服务等等。


一文带你搞懂 API 网关,别给你的系统引入定时炸弹!

那么这里就会遇到一个问题,APP/Browser怎么去访问这些后端的服务? 


如果业务比较简单的话,可以给每个业务都分配一个独立的域名(https://service.api.company.com)


但这种方式会有几个问题:

  • 每个业务都会需要鉴权、限流、权限校验等逻辑,如果每个业务都各自为战,自己造轮子实现一遍,会很蛋疼。完全可以抽出来,放到一个统一的地方去做。

  • 如果业务量比较简单的话,这种方式前期不会有什么问题

    但随着业务越来越复杂,比如淘宝、亚马逊打开一个页面可能会涉及到数百个微服务协同工作


    如果每一个微服务都分配一个域名的话,一方面客户端代码会很难维护,涉及到数百个域名

    另一方面是连接数的瓶颈,想象一下你打开一个APP,通过抓包发现涉及到了数百个远程调用,这在移动端下会显得非常低效。

  • 每上线一个新的服务,都需要运维参与,申请域名、配置Nginx等,当上线、下线服务器时,同样也需要运维参与

    另外采用域名这种方式,对于环境的隔离也不太友好,调用者需要自己根据域名自己进行判断。

  • 另外还有一个问题,后端每个微服务可能是由不同语言编写的、采用了不同的协议,比如HTTP、Dubbo、GRPC等,但是你不可能要求客户端去适配这么多种协议,这是一项非常有挑战的工作,项目会变的非常复杂且很难维护。

  • 后期如果需要对微服务进行重构的话,也会变的非常麻烦,需要客户端配合你一起进行改造

    比如商品服务,随着业务变的越来越复杂,后期需要进行拆分成多个微服务,这个时候对外提供的服务也需要拆分成多个,同时需要客户端配合你进行改造,非常蛋疼。


API Gateway


一文带你搞懂 API 网关,别给你的系统引入定时炸弹!

更好的方式是采用API网关,实现一个API网关接管所有的入口流量,类似Nginx的作用,将所有用户的请求转发给后端的服务器


但网关做的不仅仅只是简单的转发,也会针对流量做一些扩展,比如鉴权、限流、权限、熔断、协议转换、错误码统一、缓存、日志、监控、告警等


这样将通用的逻辑抽出来,由网关统一去做,业务方也能够更专注于业务逻辑,提升迭代的效率。


通过引入API网关,客户端只需要与API网关交互,而不用与各个业务方的接口分别通讯


但多引入一个组件就多引入了一个潜在的故障点,因此要实现一个高性能、稳定的网关,也会涉及到很多点。


一文带你搞懂 API 网关,别给你的系统引入定时炸弹!

API注册


业务方如何接入网关?一般来说有几种方式。


  • 第一种采用插件扫描业务方的API,比如Spring MVC的注解,并结合Swagger的注解,从而实现参数校验、文档&&SDK生成等功能,扫描完成之后,需要上报到网关的存储服务。

  • 手动录入。比如接口的路径、请求参数、响应参数、调用方式等信息,但这种方式相对来说会麻烦一些,如果参数过多的话,前期录入会很费时费力。

一文带你搞懂 API 网关,别给你的系统引入定时炸弹!


  • 配置文件导入。比如通过SwaggerOpenAPI等,比如阿里云的网关:


协议转换


内部的API可能是由很多种不同的协议实现的,比如HTTP、Dubbo、GRPC等,但对于用户来说其中很多都不是很友好,或者根本没法对外暴露,比如Dubbo服务


因此需要在网关层做一次协议转换,将用户的HTTP协议请求,在网关层转换成底层对应的协议,比如HTTP -> Dubbo


但这里需要注意很多问题,比如参数类型,如果类型搞错了,导致转换出问题,而日志又不够详细的话,问题会很难定位。


服务发现


网关作为流量的入口,负责请求的转发,但首先需要知道转发给谁,如何寻址,这里有几种方式:


  • 写死在代码/配置文件里,这种方式虽然比较挫,但也能使用,比如线上仍然使用的是物理机,IP变动不会很频繁,但扩缩容、包括应用上下线都会很麻烦,网关自身甚至需要实现一套健康监测机制。

  • 域名。采用域名也是一种不错的方案,对于所有的语言都适用,但对于内部的服务,走域名会很低效,另外环境隔离也不太友好,比如预发、线上通常是同一个数据库,因此网关读取到的可能是同一个域名,这时候预发的网关调用的就是线上的服务。

  • 注册中心。采用注册中心就不会有上述的这些问题,即使是在容器环境下,节点的IP变更比较频繁,但节点列表的实时维护会由注册中心搞定,对网关是透明的

    另外应用的正常上下线、包括异常宕机等情况,也会由注册中心的健康检查机制检测到,并实时反馈给网关。

    并且采用注册中心性能也没有额外的性能损耗,采用域名的方式,额外需要走一次DNS解析、Nginx转发等,中间多了很多跳,性能会有很大的下降,但采用注册中心,网关是和业务方直接点对点的通讯,不会有额外的损耗。


服务调用


网关由于对接很多种不同的协议,因此可能需要实现很多种调用方式


比如HTTP、Dubbo等,基于性能原因,最好都采用异步的方式,而Http、Dubbo都是支持异步的,比如apache就提供了基于NIO实现的异步HTTP客户端。


因为网关会涉及到很多异步调用,比如拦截器、HTTP客户端、dubbo、redis等,因此需要考虑下异步调用的方式


如果基于回调或者future的话,代码嵌套会很深,可读性很差,可以参考zuul和spring cloud gateway的方案,基于响应式进行改造。


优雅下线


优雅下线也是网关需要关注的一个问题,网关底层会涉及到很多种协议,比如HTTP、Dubbo,而HTTP又可以继续细分,比如域名、注册中心等


有些自身就支持优雅下线,比如Nginx自身是支持健康监测机制的,如果检测到某一个节点已经挂掉了,就会把这个节点摘掉


对于应用正常下线,需要结合发布系统,首先进行逻辑下线,然后对后续Nginx的健康监测请求直接返回失败(比如直接返回500),然后等待一段时间(根据Nginx配置决定),然后再将应用实际下线掉。


另外对于注册中心的其实也类似,一般注册中心是只支持手动下线的,可以在逻辑下线阶段调用注册中心的接口将节点下线掉


而有些不支持主动下线的,需要结合缓存的配置,让应用延迟下线。另外对于其他比如Dubbo等原理也是类似。


性能


网关作为所有流量的入口,性能是重中之重,早期大部分网关都是基于同步阻塞模型构建的,比如Zuul 1.x。


但这种同步的模型我们都知道,每个请求/连接都会占用一个线程,而线程在JVM中是一个很重的资源


比如Tomcat默认就是200个线程,如果网关隔离没有做好的话,当发生网络延迟、FullGC、第三方服务慢等情况造成上游服务延迟时,线程池很容易会被打满,造成新的请求被拒绝,但这个时候其实线程都阻塞在IO上,系统的资源被没有得到充分的利用。


另外一点,容易受网络、磁盘IO等延迟影响。需要谨慎设置超时时间,如果设置不当,且服务隔离做的不是很完善的话,网关很容易被一个慢接口拖垮。


而异步化的方式则完全不同,通常情况下一个CPU核启动一个线程即可处理所有的请求、响应。


一个请求的生命周期不再固定于一个线程,而是会分成不同的阶段交由不同的线程池处理,系统的资源能够得到更充分的利用。


而且因为线程不再被某一个连接独占,一个连接所占用的系统资源也会低得多,只是一个文件描述符加上几个监听器等


而在阻塞模型中,每条连接都会独占一个线程,而线程是一个非常重的资源。


对于上游服务的延迟情况,也能够得到很大的缓解,因为在阻塞模型中,慢请求会独占一个线程资源,而异步化之后,因为单条连接所占用的资源变的非常低,系统可以同时处理大量的请求。


如果是JVM平台,Zuul 2、Spring Cloud gateway等都是不错的异步网关选型,另外也可以基于Netty、Spring Boot2.x的webflux、vert.x或者servlet3.1的异步支持进行自研。


缓存


对于一些幂等的get请求,可以在网关层面根据业务方指定的缓存头做一层缓存,存储到Redis等二级缓存中


这样一些重复的请求,可以在网关层直接处理,而不用打到业务线,降低业务方的压力,另外如果业务方节点挂掉,网关也能够返回自身的缓存。


限流


限流对于每个业务组件来说,可以说都是一个必须的组件,如果限流做不好的话,当请求量突增时,很容易导致业务方的服务挂掉


比如双11、双12等大促时,接口的请求量是平时的数倍,如果没有评估好容量,又没有做限流的话,很容易服务整个不可用


因此需要根据业务方接口的处理能力,做好限流策略,相信大家都见过淘宝、百度抢红包时的降级页面。


因此一定要在接入层做好限流策略,对于非核心接口可以直接将降级掉,保障核心服务的可用性,对于核心接口,需要根据压测时得到的接口容量,制定对应的限流策略。


限流又分为几种:


  • 单机。单机性能比较高,不涉及远程调用,只是本地计数,对接口RT影响最小。但需要考虑下限流数的设置

    比如是针对单台网关、还是整个网关集群,如果是整个集群的话,需要考虑到网关缩容、扩容时修改对应的限流数。

  • 分布式。分布式的就需要一个存储节点维护当前接口的调用数,比如redis、sentinel等

    这种方式由于涉及到远程调用,会有些性能损耗,另外也需要考虑到存储挂掉的问题,比如redis如果挂掉,网关需要考虑降级方案,是降级到本地限流,还是直接将限流功能本身降级掉。


另外还有不同的策略:简单计数、令牌桶等,大部分场景下其实简单计数已经够用了,但如果需要支持突发流量等场景时,可以采用令牌桶等方案。


另外还需要考虑根据什么限流,比如是IP、接口、用户维度、还是请求参数中的某些值,这里可以采用表达式,相对比较灵活。


稳定性


稳定性是网关非常重要的一环,监控、告警需要做的很完善才可以,比如接口调用量、响应时间、异常、错误码、成功率等相关的监控告警,还有线程池相关的一些,比如活跃线程数、队列积压等,还有些系统层面的,比如CPU、内存、FullGC这些基本的。


网关是所有服务的入口,对于网关的稳定性的要求相对于其他服务会更高,最好能够一直稳定的运行,尽量少重启


但当新增功能、或者加日志排查问题时,不可避免的需要重新发布,因此可以参考zuul的方式,将所有的核心功能都基于不同的拦截器实现


拦截器的代码采用Groovy编写,存储到数据库中,支持动态加载、编译、运行,这样在出了问题的时候能够第一时间定位并解决,并且如果网关需要开发新功能,只需要增加新的拦截器,并动态添加到网关即可,不需要重新发布。


熔断降级


熔断机制也是非常重要的一项。若某一个服务挂掉、接口响应严重超时等发生,则可能整个网关都被一个接口拖垮,因此需要增加熔断降级,当发生特定异常的时候,对接口降级由网关直接返回,可以基于Hystrix或者Resilience4j实现。


日志


由于所有的请求都是由网关处理的,因此日志也需要相对比较完善,比如接口的耗时、请求方式、请求IP、请求参数、响应参数(注意脱敏)等,另外由于可能涉及到很多微服务,因此需要提供一个统一的traceId方便关联所有的日志,可以将这个traceId置于响应头中,方便排查问题。


隔离


比如线程池、http连接池、redis等应用层面的隔离,另外也可以根据业务场景,将核心业务部署带单独的网关集群,与其他非核心业务隔离开。


网关管控平台


这块也是非常重要的一环,需要考虑好整个流程的用户体验,比如接入到网关的这个流程,能不能尽量简化、智能,比如如果是dubbo接口,我们可以通过到git仓库中获取源码、解析对应的类、方法,从而实现自动填充,尽量帮用户减少操作;


另外接口一般是从测试->预发->线上,如果每次都要填写一遍表单会非常麻烦,我们能不能自动把这个事情做掉


另外如果网关部署到了多个可用区、甚至不同的国家,那这个时候,我们还需要接口数据同步功能,不然用户需要到每个后台都操作一遍,非常麻烦。


这块个人的建议是直接参考阿里云、aws等提供的网关服务即可,功能非常全面。


其他


其他还有些需要考虑到的点,比如接口mock,文档生成、sdk代码生成、错误码统一、服务治理相关的等,这里就不累述了。


总结


目前的网关还是中心化的架构,所有的请求都需要走一次网关,因此当大促或者流量突增时,网关可能会成为性能的瓶颈


而且当网关接入的大量接口的时候,做好流量评估也不是一项容易的工作,每次大促前都需要跟业务方一起针对接口做压测,评估出大致的容量,并对网关进行扩容


而且网关是所有流量的入口,所有的请求都是由网关处理,要想准确的评估出容量很复杂。


可以参考目前比较流行的ServiceMesh,采用去中心化的方案,将网关的逻辑下沉到sidecar中,sidecar和应用部署到同一个节点,并接管应用流入、流出的流量


这样大促时,只需要对相关的业务压测,并针对性扩容即可,另外升级也会更平滑,中心化的网关,即使灰度发布,但是理论上所有业务方的流量都会流入到新版本的网关,如果出了问题,会影响到所有的业务


但这种去中心化的方式,可以先针对非核心业务升级,观察一段时间没问题后,再全量推上线。另外ServiceMesh的方案,对于多语言支持也更友好。


End


来源:

github.com/aCoder2013/blog/issues/35

本文版权归作者所有


长按下图二维码,即刻关注【狸猫技术窝

阿里、京东、美团、字节跳动

顶尖技术专家坐镇

为IT人打造一个 “有温度” 的技术窝!


以上是关于一文搞懂Nginx限流,原来这么简单的主要内容,如果未能解决你的问题,请参考以下文章

长这么大才读懂高并发核心编程,限流原理与实战,Nginx漏桶限流

使用Nginx实现限流

两个简单的API限流实现方案

Nginx限流配置

实战:使用 Nginx 限流

图解Nginx限流配置