第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
Posted 累吗?累就对了,舒服是留给死人的...
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query相关的知识,希望对你有一定的参考价值。
/** Spark SQL源码分析系列文章*/
前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。
那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式。
一、引子
当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用。
即parse后,会形成InMemoryRelation结点,最后执行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。
如下:
- scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
- exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =
- == Parsed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Analyzed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Optimized Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Physical Plan ==
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) //查询内存中表的入口
- Code Generation: false
- == RDD ==
二、InMemoryColumnarTableScan
- private[sql] case class InMemoryColumnarTableScan(
- attributes: Seq[Attribute],
- relation: InMemoryRelation)
- extends LeafNode {
- override def output: Seq[Attribute] = attributes
- override def execute() = {
- relation.cachedColumnBuffers.mapPartitions { iterator =>
- // Find the ordinals of the requested columns. If none are requested, use the first.
- val requestedColumns = if (attributes.isEmpty) {
- Seq(0)
- } else {
- attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //根据表达式exprId找出对应列的ByteBuffer的索引
- }
- iterator
- .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//根据索引取得对应请求列的ByteBuffer,并封装为ColumnAccessor。
- .flatMap { columnAccessors =>
- val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) {
- columnAccessors(i).extractTo(nextRow, i) //根据对应index和长度,从byterbuffer里取得值,封装到row里
- i += 1
- }
- nextRow
- }
- override def hasNext = columnAccessors.head.hasNext
- }
- }
- }
- }
- }
查询请求的列,如下:
- scala> exe.optimizedPlan
- res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val relation = exe.optimizedPlan(1)
- relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val request_relation = exe.executedPlan
- request_relation: org.apache.spark.sql.execution.SparkPlan =
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None))
- scala> request_relation.output //请求的列,我们请求的只有value列
- res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- scala> relation.output //默认保存在relation中的所有列
- res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5)
- scala> val attributes = request_relation.output
- attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- //根据exprId找出对应ID
- scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
- attr_index: Seq[Int] = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据
- scala> relation.output.foreach(e=>println(e.exprId))
- ExprId(4) //对应<span style="font-family: Arial, Helvetica, sans-serif;">[key#4,value#5]</span>
- ExprId(5)
- scala> request_relation.output.foreach(e=>println(e.exprId))
- ExprId(5)
三、ColumnAccessor
ColumnAccessor对应每一种类型,类图如下:
最后返回一个新的迭代器:
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) { //请求列的长度
- columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer
- i += 1
- }
- nextRow//返回解析后的row
- }
- override def hasNext = columnAccessors.head.hasNext
- }
四、总结
Spark SQL In-Memory Columnar Storage的查询相对来说还是比较简单的,其查询思想主要和存储的数据结构有关。
即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
查询时,根据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。
——EOF——
创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/39577419
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。
转自:http://blog.csdn.net/oopsoom/article/details/39577419
以上是关于第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query的主要内容,如果未能解决你的问题,请参考以下文章
第八篇:Spark SQL Catalyst源码分析之UDF