hadoop mapreduce

Posted 沙中世界

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop mapreduce相关的知识,希望对你有一定的参考价值。

写在前面:

需要保证hadoop版本  各个jar版本一致,否则可能出现各种哦莫名奇妙的错误!

maven 依赖:

技术分享
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <packaging>jar</packaging>
    <groupId>BaseTecLearn</groupId>
    <artifactId>BaseTecLearn</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.2.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.2.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.thrift</groupId>
            <artifactId>libthrift</artifactId>
            <version>0.6.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.7.4</version>
        </dependency>
    </dependencies>
</project>
View Code

 

resource目录下配置日志(很重要,可以查看警告啥的)

log4j.rootLogger=WARN,stdout,logfile  
log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  

log4j.appender.logfile=org.apache.log4j.FileAppender  
log4j.appender.logfile.File=hadoop.log   
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%ns  

 

package top.letsgogo;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path("/home/panteng/IdeaProjects/pushscore-sdk/baseTecLearn/target/classes/regular.txt"));
    FileOutputFormat.setOutputPath(job, new Path("/home/panteng/IdeaProjects/pushscore-sdk/baseTecLearn/target/classes/regular"));
    System.out.println(job.waitForCompletion(true));
    //System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

 

以上是关于hadoop mapreduce的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop每日一讨论整理版

怎么在hadoop上部署mapreduce

Linux巩固记录 hadoop 2.7.4下自己编译代码并运行MapReduce程序

hadoop mapreduce的日志输出到哪里

如何在hadoop环境下执行mapreduce任务

Hadoop之Mapreduce详解