redis源码学习_字典

Posted abc_begin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了redis源码学习_字典相关的知识,希望对你有一定的参考价值。

redis中字典有以下要点:

(1)它就是一个键值对,对于hash冲突的处理采用了头插法的链式存储来解决。

(2)对rehash,扩展就是取第一个大于等于used * 2的2 ^ n的数作为新的hash表大小;缩紧就是取第一个大于等于used的2 ^ n的数作为新的hash表大小。后面会介绍到dict结构体中是有dictht ht[2]这个成员变量的,为什么是2个呢?就是为了做rehash时交替使用的。那么何时扩展,何时缩紧呢?有个负载因子的概念(负载因子 = used / size,注意这里面的used也是包括了链式存储解决冲突时候的元素个数),没有执行BGSAVE或者BGREWRITEAOF时大于1就会扩展,小于0.1就会缩紧。搞的时候会用渐进式rehash的方法来搞,再此过程中对于字典的删、改、查会在2个ht上面进行,而增只会在新的ht上进行。

主要关注dict.c和dici.h。

首先先看一下结构体dictht:

 1 /* This is our hash table structure. Every dictionary has two of this as we
 2  * implement incremental rehashing, for the old to the new table. */
 3 typedef struct dictht {
 4     //每个具体table[i]中的节点数据类型是dictEntry 结构表示, 每个 dictEntry 结构都保存着一个键值对:
 5     dictEntry **table;
 6 
 7     // 哈希表大小
 8     unsigned long size;
 9     
10     // 哈希表大小掩码,用于计算索引值,总是等于 size - 1
11     unsigned long sizemask; 
12 
13     // 该哈希表已有节点的数量
14     unsigned long used;
15 
16 } dictht;

 

再看结构体dictEntry:

 1 typedef struct dictEntry { 
 2     //
 3     void *key;
 4     
 5     //
 6     union {
 7         void *val;
 8         uint64_t u64;
 9         int64_t s64;
10     } v;
11 
12     
13     //next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。
14     struct dictEntry *next;
15 
16 } dictEntry;

 

对于k1和k0值相等的情况下,见下图:

 

 再来看结构体dict:

 1 typedef struct dict {//dictCreate创建和初始化
 2     // 类型特定函数,实现多态
 3     dictType *type;
 4 
 5     // 私有数据 
 6     void *privdata;
 7 
 8     // 哈希表
 9     dictht ht[2];
10 
11     // rehash 索引
12     int rehashidx; /* rehashing not in progress if rehashidx == -1 */
13 
14     // 目前正在运行的安全迭代器的数量
15     int iterators; /* number of iterators currently running */
16 
17 } dict; 

 

再看结构体dictType:

 1 typedef struct dictType {
 2     unsigned int (*hashFunction)(const void *key);
 3 
 4     void *(*keyDup)(void *privdata, const void *key);
 5 
 6     void *(*valDup)(void *privdata, const void *obj);
 7 
 8     int (*keyCompare)(void *privdata, const void *key1, const void *key2);
 9 
10     void (*keyDestructor)(void *privdata, void *key);
11     
12     void (*valDestructor)(void *privdata, void *obj);
13 
14 } dictType;

里面就是各种函数指针。

 

 

dictCreate:创建字典,比较简单,不过多解释

 1 /* Create a new hash table */
 2 dict *dictCreate(dictType *type,
 3         void *privDataPtr)
 4 {
 5     dict *d = zmalloc(sizeof(*d));
 6 
 7     _dictInit(d,type,privDataPtr);
 8 
 9     return d;
10 }

 

_dictInit:初始化操作

 1 /* Initialize the hash table */
 2 int _dictInit(dict *d, dictType *type,
 3         void *privDataPtr)
 4 {
 5     // 初始化两个哈希表的各项属性值
 6     // 但暂时还不分配内存给哈希表数组
 7     _dictReset(&d->ht[0]);
 8     _dictReset(&d->ht[1]);
 9 
10     // 设置类型特定函数
11     d->type = type;
12 
13     // 设置私有数据
14     d->privdata = privDataPtr;
15 
16     // 设置哈希表 rehash 状态
17     d->rehashidx = -1;
18 
19     // 设置字典的安全迭代器数量
20     d->iterators = 0;
21 
22     return DICT_OK;
23 }

 

_dictReset:赋初值

1 static void _dictReset(dictht *ht)
2 {
3     ht->table = NULL;
4     ht->size = 0;
5     ht->sizemask = 0;
6     ht->used = 0;
7 }

 

 dictAdd:添加k-v到字典中,调用关系比较乱,我们来看一下

dictAdd

  -->dictAddRaw

    -->_dictRehashStep

      -->dictRehash

    -->_dictKeyIndex

      -->_dictExpandIfNeeded

        -->dictExpand

          -->_dictNextPower

    -->dictSetKey

  -->dictSetVal

 

 有了调用关系就好办了,下面来分别分析以上函数都做了什么。

 

_dictRehashStep:分步rehash包裹函数

1 static void _dictRehashStep(dict *d) {
2     if (d->iterators == 0) dictRehash(d,1);
3 }

 

dictRehash:分步rehash

 1 int dictRehash(dict *d, int n) { 
 2     // 只可以在 rehash 进行中时执行
 3     if (!dictIsRehashing(d)) return 0;
 4 
 5     // 进行 N 步迁移
 6     while(n--) {
 7         dictEntry *de, *nextde;
 8 
 9         /* Check if we already rehashed the whole table... */
10         // 如果 0 号哈希表为空,那么表示 rehash 执行完毕
11         if (d->ht[0].used == 0) {
12             zfree(d->ht[0].table);
13             d->ht[0] = d->ht[1];
14             _dictReset(&d->ht[1]);
15             d->rehashidx = -1;
16             return 0;
17         }
18 
19         /* Note that rehashidx can\'t overflow as we are sure there are more
20          * elements because ht[0].used != 0 */
21         assert(d->ht[0].size > (unsigned)d->rehashidx);
22 
23         // 略过数组中为空的索引,找到下一个非空索引
24         while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
25 
26         // 指向该索引的链表表头节点
27         de = d->ht[0].table[d->rehashidx];
28         /* Move all the keys in this bucket from the old to the new hash HT */
29         while(de) { 
30             unsigned int h;
31 
32             nextde = de->next;
33 
34             /* Get the index in the new hash table */
35             h = dictHashKey(d, de->key) & d->ht[1].sizemask;
36 
37             de->next = d->ht[1].table[h];
38             d->ht[1].table[h] = de;
39 
40             // 更新计数器
41             d->ht[0].used--;
42             d->ht[1].used++;
43 
44             // 继续处理下个节点
45             de = nextde;
46         }
47         // 将刚迁移完的哈希表索引的指针设为空
48         d->ht[0].table[d->rehashidx] = NULL;
49         // 更新 rehash 索引
50         d->rehashidx++;
51     }
52 
53     return 1;
54 }

 

dictExpand:扩充函数,是否需要rehash的标志rehashidx也是从这里面搞的,这样它就不为-1了。

 1 /* Expand or create the hash table */
 2 int dictExpand(dict *d, unsigned long size)
 3 {
 4     // 新哈希表
 5     dictht n; /* the new hash table */
 6 
 7     unsigned long realsize = _dictNextPower(size);
 8 
 9     /* the size is invalid if it is smaller than the number of
10      * elements already inside the hash table */
11     if (dictIsRehashing(d) || d->ht[0].used > size)
12         return DICT_ERR;
13 
14     /* Allocate the new hash table and initialize all pointers to NULL */
15     n.size = realsize;
16     n.sizemask = realsize-1;
17     n.table = zcalloc(realsize*sizeof(dictEntry*));
18     n.used = 0;
19  
20     //下面是要区分2种情况的,需要注意了
21 
22     /* Is this the first initialization? If so it\'s not really a rehashing
23      * we just set the first hash table so that it can accept keys. */
24     // 如果 0 号哈希表为空,那么这是一次初始化:
25     if (d->ht[0].table == NULL) {
26         d->ht[0] = n;
27         return DICT_OK;
28     }
29 
30     /* Prepare a second hash table for incremental rehashing */
31     // 如果 0 号哈希表非空,那么这是一次 rehash :
32     // 程序将新哈希表设置为 1 号哈希表,
33     // 并将字典的 rehash 标识打开,让程序可以开始对字典进行 rehash
34     d->ht[1] = n;
35     d->rehashidx = 0;
36     return DICT_OK;
37 
38 }

 

dictAddRaw:添加新的键到字典

 1 /* Low level add. This function adds the entry but instead of setting
 2  * a value returns the dictEntry structure to the user, that will make
 3  * sure to fill the value field as he wishes.
 4  *
 5  * This function is also directly exposed to user API to be called
 6  * mainly in order to store non-pointers inside the hash value, example:
 7  *
 8  * entry = dictAddRaw(dict,mykey);
 9  * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
10  *
11  * Return values:
12  *
13  * If key already exists NULL is returned.
14  * If key was added, the hash entry is returned to be manipulated by the caller.
15  */
16 dictEntry *dictAddRaw(dict *d, void *key)
17 {
18     int index;
19     dictEntry *entry;
20     dictht *ht;
21 
22     if (dictIsRehashing(d)) _dictRehashStep(d);
23 
24     /* Get the index of the new element, or -1 if
25      * the element already exists. */
26     if ((index = _dictKeyIndex(d, key)) == -1)
27         return NULL;
28 
29     /* Allocate the memory and store the new entry */
30     ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
31     entry = zmalloc(sizeof(*entry));
32     entry->next = ht->table[index];
33     ht->table[index] = entry;
34     ht->used++;
35 
36     /* Set the hash entry fields. */
37     dictSetKey(d, entry, key);
38 
39     return entry;
40 }

 

dictAdd:添加新的键值对到字典

 1 /* Add an element to the target hash table */   
 2 int dictAdd(dict *d, void *key, void *val)
 3 {
 4     dictEntry *entry = dictAddRaw(d,key);
 5 
 6     // 键已存在,添加失败
 7     if (!entry) return DICT_ERR;
 8 
 9     // 键不存在,设置节点的值
10     dictSetVal(d, entry, val);
11 
12     return DICT_OK;
13 }

 

dictReplace:更新键值对,原来没有就添加,原来有就更新值

 1 /* Add an element, discarding the old if the key already exists.
 2  * Return 1 if the key was added from scratch, 0 if there was already an element with such key and dictReplace() just performed a value update operation. 
 3  */ 
 4 int dictReplace(dict *d, void *key, void *val)
 5 {
 6     dictEntry *entry, auxentry;
 7 
 8     /* Try to add the element. If the key
 9      * does not exists dictAdd will suceed. */
10     if (dictAdd(d, key, val) == DICT_OK)
11         return 1;
12 
13     /* It already exists, get the entry */
14     entry = dictFind(d, key);
15    
16     auxentry = *entry;
17 
18     dictSetVal(d, entry, val);
19 
20     dictFreeVal(d, &auxentry);
21 
22     return 0;
23 }

 

 dictGenericDelete:删除指定key对应的一个元素

 1 /* Search and remove an element */
 2 static int dictGenericDelete(dict *d, const void *key, int nofree)
 3 {
 4     unsigned int h, idx;
 5     dictEntry *he, *prevHe;
 6     int table;
 7 
 8     if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
 9 
10     if (dictIsRehashing(d)) _dictRehashStep(d);
11 
12     // 计算哈希值
13     h = dictHashKey(d, key);
14 
15     // 遍历哈希表
16     for (table = 0; table <= 1; table++) {
17 
18         // 计算索引值 
19         idx = h & d->ht[table].sizemask;
20         // 指向该索引上的链表,就是链表的第一个元素
21         he = d->ht[table].table[idx];
22         prevHe = NULL;
23 
24         while(he) {
25         
26             if (dictCompareKeys(d, key, he->key)) {
27                
28                 /* Unlink the element from the list */
29                 // 就是删除一个就得了
30                 if (prevHe)
31                     prevHe->next = he->next;
32                 else
33                     d->ht[table].table[idx] = he->next;
34 
35                 if (!nofree) {
36                     dictFreeKey(d, he);
37                     dictFreeVal(d, he);
38                 }
39                 
40                 zfree(he);
41 
42                 d->ht[table].used--;
43 
44                 return DICT_OK;
45             }
46 
47             prevHe = he;
48             he = he->next;
49         }
50 
51         if (!dictIsRehashing(d)) break;
52     }
53 
54     return DICT_ERR; /* not found */
55 }

 

 _dictClear:释放hash

 1 /* Destroy an entire dictionary */
 2 int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
 3     unsigned long i;
 4 
 5     /* Free all the elements */
 6     for (i = 0; i < ht->size && ht->used > 0; i++) {
 7         dictEntry *he, *nextHe;
 8 
 9         if (callback && (i & 65535) == 0) callback(d->privdata); 
10 
11         // 跳过空索引
12         if ((he = ht->table[i]) == NULL) continue;
13 
14         // 遍历整个链表
15         while(he) {
16             nextHe = he->next;
17             dictFreeKey(d, he);
18             dictFreeVal(d, he);
19             zfree(he);
20 
21             ht->used--;
22 
23             he = nextHe;
24         }
25     }
26 
27     /* Free the table and the allocated cache structure */
28     zfree(ht->table);
29 
30     /* Re-initialize the table */
31     _dictReset(ht);
32 
33     return DICT_OK; /* never fails */
34 }

 

 关于dictGetIterator、dictGetSafeIterator、dictNext、dictReleaseIterator具体应用暂时分析一下:

首先先看用到这几个函数的地方吧

 1 void keysCommand(redisClient *c) {
 2     dictIterator *di;
 3     dictEntry *de;
 4 
 5     sds pattern = c->argv[1]->ptr;
 6 
 7     int plen = sdslen(pattern), allkeys;
 8     unsigned long numkeys = 0;
 9     void *replylen = addDeferredMultiBulkLength(c);
10 
11     /* 首先先搞一个迭代器出来 */
12     di = dictGetSafeIterator(c->db->dict);
13     allkeys = (pattern[0] == \'*\' && pattern[1] == \'\\0\');
14     
15     /* 开始遍历迭代器 */
16     while((de = dictNext(di)) != NULL) {
17         sds key = dictGetKey(de);
18         robj *keyobj;
19 
20         if (allkeys || stringmatchlen(pattern,plen,key,sdslen(key),0)) {
21 
22             keyobj = createStringObject(key,sdslen(key));
23 
24             if (expireIfNeeded(c->db,keyobj) == 0) {
25                 addReplyBulk(c,keyobj);
26                 numkeys++;
27             }
28 
29             decrRefCount(keyobj);
30         }
31     }
32 
33     /* 释放迭代器 */          
34     dictReleaseIterator(di);
35 
36     setDeferredMultiBulkLength(c,replylen,numkeys);
37 }

 

有了上面的应用场景,我们再来看上面几个函数的实现就好办了。

先看dictIterator结构体:

 1 /* If safe is set to 1 this is a safe iterator, that means, you can call
 2  * dictAdd, dictFind, and other functions against the dictionary even while
 3  * iterating. Otherwise it is a non safe iterator, and only dictNext()
 4  * should be called while iterating. */
 5 typedef struct dictIterator {
 6         
 7     // 被迭代的字典
 8     dict *d;
 9 
10     // table :正在被迭代的哈希表号码,值可以是 0 或 1 。  dictht ht[2];中的哪一个
11     // index :迭代器当前所指向的哈希表索引位置。  对应具体的桶槽位号
12     // safe :标识这个迭代器是否安全
13     redis学习记录:字典(dict)源码分析

redis学习记录:字典(dict)源码分析

redis学习记录:字典(dict)源码分析

redis源码学习rax,我愿称之为“升级版字典树”

redis源码学习rax,我愿称之为“升级版字典树”

Redis源码学习