使用 sqoop 将mysql数据导入到hive(import)

Posted 嘣嘣嚓

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用 sqoop 将mysql数据导入到hive(import)相关的知识,希望对你有一定的参考价值。

Sqoop 将mysql 数据导入到hdfs(import)

1.创建mysql表

CREATE TABLE `sqoop_test` (
`id` int(11) DEFAULT NULL,
`name` varchar(255) DEFAULT NULL,
`age` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

插入数据

 

2.hive 建表

hive> create external table sqoop_test(id int,name string,age int)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY \',\'
> STORED AS TEXTFILE
> location \'/user/hive/external/sqoop_test\';
OK
Time taken: 0.145 seconds

 

3.使用sqoop将mysql数据导入到hdfs

sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1

--delete-target-dir:如果目标目录存在则删除。

EFdeMacBook-Pro:bin FengZhen$ sqoop import --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --columns id,name,age --fields-terminated-by , --delete-target-dir --target-dir /user/hive/external/sqoop_test/ -m 1
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hbase-1.3.0/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/09/13 11:12:19 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
17/09/13 11:12:19 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
17/09/13 11:12:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
17/09/13 11:12:19 INFO tool.CodeGenTool: Beginning code generation
17/09/13 11:12:19 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT 1
17/09/13 11:12:19 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT 1
17/09/13 11:12:19 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /Users/FengZhen/Desktop/Hadoop/hadoop-2.8.0
17/09/13 11:12:21 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-FengZhen/compile/1a0c4154ffefb21d4af720813dd0b3fc/sqoop_test.jar
17/09/13 11:12:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/09/13 11:12:22 INFO tool.ImportTool: Destination directory /user/hive/external/sqoop_test deleted.
17/09/13 11:12:22 WARN manager.MySQLManager: It looks like you are importing from mysql.
17/09/13 11:12:22 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
17/09/13 11:12:22 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
17/09/13 11:12:22 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
17/09/13 11:12:22 INFO mapreduce.ImportJobBase: Beginning import of sqoop_test
17/09/13 11:12:22 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
17/09/13 11:12:22 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
17/09/13 11:12:22 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
17/09/13 11:12:22 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8032
17/09/13 11:12:24 INFO db.DBInputFormat: Using read commited transaction isolation
17/09/13 11:12:24 INFO mapreduce.JobSubmitter: number of splits:1
17/09/13 11:12:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0008
17/09/13 11:12:25 INFO impl.YarnClientImpl: Submitted application application_1505268150495_0008
17/09/13 11:12:25 INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0008/
17/09/13 11:12:25 INFO mapreduce.Job: Running job: job_1505268150495_0008
17/09/13 11:12:35 INFO mapreduce.Job: Job job_1505268150495_0008 running in uber mode : false
17/09/13 11:12:35 INFO mapreduce.Job: map 0% reduce 0%
17/09/13 11:12:41 INFO mapreduce.Job: map 100% reduce 0%
17/09/13 11:12:41 INFO mapreduce.Job: Job job_1505268150495_0008 completed successfully
17/09/13 11:12:41 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=156817
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=87
HDFS: Number of bytes written=26
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters 
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=3817
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=3817
Total vcore-milliseconds taken by all map tasks=3817
Total megabyte-milliseconds taken by all map tasks=3908608
Map-Reduce Framework
Map input records=3
Map output records=3
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=33
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=154140672
File Input Format Counters 
Bytes Read=0
File Output Format Counters 
Bytes Written=26
17/09/13 11:12:41 INFO mapreduce.ImportJobBase: Transferred 26 bytes in 18.6372 seconds (1.3951 bytes/sec)
17/09/13 11:12:41 INFO mapreduce.ImportJobBase: Retrieved 3 records.

 

可在hdfs看到传入的数据

EFdeMacBook-Pro:jarfile FengZhen$ hadoop fs -ls /user/hive/external/sqoop_test
Found 2 items
-rw-r--r--   1 FengZhen supergroup          0 2017-09-13 11:12 /user/hive/external/sqoop_test/_SUCCESS
-rw-r--r--   1 FengZhen supergroup         26 2017-09-13 11:12 /user/hive/external/sqoop_test/part-m-00000

 

可在hive中查看数据。

hive> select * from sqoop_test;
OK
1    fz    13
3    dx    18
2    test    13
Time taken: 1.756 seconds, Fetched: 3 row(s)

使用sqoop将hive数据导出到mysql(export)

以上是关于使用 sqoop 将mysql数据导入到hive(import)的主要内容,如果未能解决你的问题,请参考以下文章

sqoop从mysql导入到hive中问题

使用sqoop将mysql数据导入到hive中

sqoop mysql数据变化怎么导入

Sqoop- sqoop将mysql数据表导入到hive报错(未解决)

利用sqoop将hive数据导入导出数据到mysql

linux中sqoop实现hive数据导入到mysql