hadoop wordcount

Posted 天之涯0204

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop wordcount相关的知识,希望对你有一定的参考价值。

 

Mapper

// map的数量与数的分片有关系
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{

	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String[] words = StringUtils.split(line, " ");
		for (String word : words) {
			context.write(new Text(word), new LongWritable(1));
		}
	}
}

  

Reducer 

public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

	
	@Override
	protected void reduce(Text key, Iterable<LongWritable> values, Context context)
			throws IOException, InterruptedException {
		long count = 0;
		for (LongWritable l : values) {
			count ++;
		}
		context.write(key, new LongWritable(count));
	}
}

 

Runner

public class WCRunner {

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(WCRunner.class);
		
		job.setMapperClass(WCMapper.class);
		job.setReducerClass(WCReducer.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(LongWritable.class);
// 设置reduce的数量,对应的会生成设置数量的文件,每个文件的内容是根据
// job.setPartitionerClass(HashPartitioner.class);中的Partitioner确定

                job.setNumReduceTasks(10); 
FileInputFormat.setInputPaths(job, new Path(args[0])); 
FileOutputFormat.setOutputPath(job, new Path(args[1])); 
System.exit(job.waitForCompletion(true) ? 0 : 1); 
} 
}

  

 

public class WCRunner2 extends Configured implements Tool{

  
	public int run(String[] args) throws Exception {	  
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(WCRunner2.class);
		
		job.setMapperClass(WCMapper.class);
        job.setReducerClass(WCReducer.class);	
        
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
		return job.waitForCompletion(true) ? 0 : 1;
	}

	
	public static void main(String[] args) throws Exception {
		ToolRunner.run(new WCRunner2(), args);
	}
 
}

 

执行:  hadoop jar wc.jar com.easytrack.hadoop.mr.WCRunner2  /wordcount.txt /wc/output4

以上是关于hadoop wordcount的主要内容,如果未能解决你的问题,请参考以下文章

如何运行自带wordcount-Hadoop2

Hadoop- Wordcount程序原理及代码实现

hadoop 学习笔记-2wordcount 完整实例

大数据wordcount代码。要理解代码就要配合图形理解

Hadoop:WordCount分析

MapReduce编写wordcount程序代码实现