kafka监控实战(jmxtrans+InfluxDb+Grafana)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kafka监控实战(jmxtrans+InfluxDb+Grafana)相关的知识,希望对你有一定的参考价值。
一、前言
从上周一直在调研找一款好用的kafka监控,我测试使用过的KafkaOffsetMonitor、Burrow、kafka-monitor、Kafka-Manager,他们各有优缺点,具体情况我这里就不展开描述了,大家可以到它们的git上去查看, 并且它们基本上都是监控topic的写入和读取等等,没有提供对于整体集群的监控信息,比如集群的分片、延时、内存使用情况等等,无意中发现了jmxtrans,jmxtrans它是一个通过jmx采集java应用的数据采集器,他的输出可以是Graphite、StatsD、Ganglia、InfluxDb等等,刚好我们现有的监控是通过InfluxDb做数据存储的,通过Grafana做展示,下面就给大家介绍一下jmxtrans+InfluxDb+Grafana监控kafka的整体解决方案,并且不需要任何额外的开发工作,完全使用原生的。
二、环境介绍
1、角色
a、10.10.10.10 InfluxDb b、10.10.10.100 Grafana c、10.10.30.69 jmxtrans d、kafka集群 10.10.20.14 node1 10.10.20.15 node2 10.10.20.16 node3 10.10.20.17 node4
2、软件版本
influxdb-1.2.4-1.x86_64 grafana-4.1.1-1484211277.x86_64 jmxtrans-266.rpm kafka_2.10-0.9.0.0.jar.asc
3、架构图
三、配置规划
1、jmxtrans我们可以分别在每台kafka节点上部署,也可以部署到一台机器上,我这里是选择了后者,因为我的集群小,这样配置文件可以集中管理,如果集群比较大,可以考虑分散部署。
2、关于jmxtrans的配置文件,分全局指标(每个kafka节点)和topic指标,全局指标每个节点一个配置文件,命名规则:base_10.10.20.14.json,topic指标是每个topic一个配置文件,命名规则:falcon_monitor_us_17.json
四、监控指标
1、全局指标
每秒输入的流量
"obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec" "attr" : [ "Count" ] "resultAlias":"BytesInPerSec" "tags" : {"application" : "BytesInPerSec"}
每秒输入的流量
"obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec" "attr" : [ "Count" ] "resultAlias":"BytesOutPerSec" "tags" : {"application" : "BytesOutPerSec"}
每秒输入的流量
"obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesRejectedPerSec" "attr" : [ "Count" ] "resultAlias":"BytesRejectedPerSec" "tags" : {"application" : "BytesRejectedPerSec"}
每秒的消息写入总量
"obj" : "kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec" "attr" : [ "Count" ] "resultAlias":"MessagesInPerSec" "tags" : {"application" : "MessagesInPerSec"}
每秒FetchFollower的请求次数
"obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchFollower" "attr" : [ "Count" ] "resultAlias":"RequestsPerSec" "tags" : {"request" : "FetchFollower"}
每秒FetchConsumer的请求次数
"obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchConsumer" "attr" : [ "Count" ] "resultAlias":"RequestsPerSec" "tags" : {"request" : "FetchConsumer"}
每秒Produce的请求次数
"obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce" "attr" : [ "Count" ] "resultAlias":"RequestsPerSec" "tags" : {"request" : "Produce"}
内存使用的使用情况
"obj" : "java.lang:type=Memory" "attr" : [ "HeapMemoryUsage", "NonHeapMemoryUsage" ] "resultAlias":"MemoryUsage" "tags" : {"application" : "MemoryUsage"}
GC的耗时和次数
"obj" : "java.lang:type=GarbageCollector,name=*" "attr" : [ "CollectionCount","CollectionTime" ] "resultAlias":"GC" "tags" : {"application" : "GC"}
线程的使用情况
"obj" : "java.lang:type=Threading" "attr" : [ "PeakThreadCount","ThreadCount" ] "resultAlias":"Thread" "tags" : {"application" : "Thread"}
副本落后主分片的最大消息数量
"obj" : "kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica" "attr" : [ "Value" ] "resultAlias":"ReplicaFetcherManager" "tags" : {"application" : "MaxLag"}
该broker上的partition的数量
"obj" : "kafka.server:type=ReplicaManager,name=PartitionCount" "attr" : [ "Value" ] "resultAlias":"ReplicaManager" "tags" : {"application" : "PartitionCount"}
正在做复制的partition的数量
"obj" : "kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions" "attr" : [ "Value" ] "resultAlias":"ReplicaManager" "tags" : {"application" : "UnderReplicatedPartitions"}
Leader的replica的数量
"obj" : "kafka.server:type=ReplicaManager,name=LeaderCount" "attr" : [ "Value" ] "resultAlias":"ReplicaManager" "tags" : {"application" : "LeaderCount"}
一个请求FetchConsumer耗费的所有时间
"obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchConsumer" "attr" : [ "Count","Max" ] "resultAlias":"TotalTimeMs" "tags" : {"application" : "FetchConsumer"}
一个请求FetchFollower耗费的所有时间
"obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchFollower" "attr" : [ "Count","Max" ] "resultAlias":"TotalTimeMs" "tags" : {"application" : "FetchFollower"}
一个请求Produce耗费的所有时间
"obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=Produce" "attr" : [ "Count","Max" ] "resultAlias":"TotalTimeMs" "tags" : {"application" : "Produce"}
2、topic的监控指标
falcon_monitor_us每秒的写入流量
"kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=falcon_monitor_us" "attr" : [ "Count" ] "resultAlias":"falcon_monitor_us" "tags" : {"application" : "BytesInPerSec"}
falcon_monitor_us每秒的输出流量
"kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=falcon_monitor_us" "attr" : [ "Count" ] "resultAlias":"falcon_monitor_us" "tags" : {"application" : "BytesOutPerSec"}
falcon_monitor_us每秒写入消息的数量
"obj" : "kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=falcon_monitor_us" "attr" : [ "Count" ] "resultAlias":"falcon_monitor_us" "tags" : {"application" : "MessagesInPerSec"}
falcon_monitor_us在每个分区最后的Offset
"obj" : "kafka.log:type=Log,name=LogEndOffset,topic=falcon_monitor_us,partition=*" "attr" : [ "Value" ] "resultAlias":"falcon_monitor_us" "tags" : {"application" : "LogEndOffset"}
PS:
1、参数说明
"obj"对应jmx的ObjectName,就是我们要监控的指标
"attr"对应ObjectName的属性,可以理解为我们要监控的指标的值
"resultAlias"对应metric 的名称,在InfluxDb里面就是MEASUREMENTS名
"tags" 对应InfluxDb的tag功能,对与存储在同一个MEASUREMENTS里面的不同监控指标可以做区分,我们在用Grafana绘图的时候会用到,建议对每个监控指标都打上tags
2、对于全局监控,每一个监控指标对应一个MEASUREMENTS,所有的kafka节点同一个监控指标数据写同一个MEASUREMENTS ,对于topc监控的监控指标,同一个topic所有kafka节点写到同一个MEASUREMENTS,并且以topic名称命名
五、安装
1、kafka
这里不详细介绍kafka集群的安装,主要说一下kafka的启动方式,因为我们需要通过jmx采集kafka的监控数据,所以在kafka的启动时候需要启动jmx端口,启动方式如下:
cd /data/kafka/bin/ JMX_PORT=9999 nohup ./kafka-server-start.sh ../config/server.properties >/dev/null 2>&1 &
2、InfluxDb
yum -y install influxdb ##安装 /etc/init.d/influxdb start ##启动服务 [[email protected] jmxtrans]# influx Connected to http://localhost:8086 version 1.3.2 InfluxDB shell version: 1.3.2 > CREATE USER "root" WITH PASSWORD ‘123456‘ WITH ALL PRIVILEGES ##添加一个账号 >
3、Grafana
yum -y install grafana ##安装 /etc/init.d/grafana-server start ##启动服务
4、jmxtrans
wget http://central.maven.org/maven2/org/jmxtrans/jmxtrans/266/jmxtrans-266.rpm rpm -ivh jmxtrans-266.rpm ##安装 /etc/init.d/jmxtrans start ##启动
六、配置
这里主要介绍jmxtrans采集数据的配置文件撰写和Grafana绘图的配置注意事项,kafka和InfluxDb的配置这里不做描述。
1、jmxtrans
a、jmxtrans默认读取/var/lib/jmxtrans下的配置文件去采集数据的,所以我们把采集kafka监控数据的配置文件都在这个目录下,下面是我的配置文件命名规范:
[[email protected] jmxtrans]# ll total 96 -rw-r--r-- 1 root root 1657 Aug 18 17:03 article-feedback-10min-json_14.json -rw-r--r-- 1 root root 1657 Aug 18 17:03 article-feedback-10min-json_15.json -rw-r--r-- 1 root root 1657 Aug 18 17:04 article-feedback-10min-json_16.json -rw-r--r-- 1 root root 1657 Aug 18 17:04 article-feedback-10min-json_17.json -rw-r--r-- 1 root root 8430 Aug 22 08:24 base_10.10.20.14.json -rw-r--r-- 1 root root 8431 Aug 22 08:24 base_10.10.20.15.json -rw-r--r-- 1 root root 8431 Aug 22 08:25 base_10.10.20.16.json -rw-r--r-- 1 root root 8431 Aug 22 08:25 base_10.10.20.17.json -rw-r--r-- 1 root root 2027 Aug 21 16:19 falcon_monitor_us_14.json -rw-r--r-- 1 root root 2027 Aug 21 16:20 falcon_monitor_us_15.json -rw-r--r-- 1 root root 2484 Aug 21 20:58 falcon_monitor_us_16.json -rw-r--r-- 1 root root 2027 Aug 21 16:20 falcon_monitor_us_17.json -rw-r--r-- 1 root root 2147 Aug 21 17:43 highgmp-articles-through-primary_14.json -rw-r--r-- 1 root root 2147 Aug 21 17:46 highgmp-articles-through-primary_15.json -rw-r--r-- 1 root root 2147 Aug 21 17:46 highgmp-articles-through-primary_16.json -rw-r--r-- 1 root root 2147 Aug 21 17:47 highgmp-articles-through-primary_17.json [[email protected] jmxtrans]# pwd /var/lib/jmxtrans
b、全局监控的配置文件,以10.10.20.14为例:
[[email protected] jmxtrans]# cat base_10.10.20.14.json { "servers" : [ { "port" : "9999", "host" : "10.10.20.14", "queries" : [ { "obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec", "attr" : [ "Count","OneMinuteRate" ], "resultAlias":"BytesInPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "BytesInPerSec"} } ] }, { "obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec", "attr" : [ "Count","OneMinuteRate" ], "resultAlias":"BytesOutPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "BytesOutPerSec"} } ] }, { "obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesRejectedPerSec", "attr" : [ "Count","OneMinuteRate" ], "resultAlias":"BytesRejectedPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "BytesRejectedPerSec"} } ] }, { "obj" : "kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec", "attr" : [ "Count","OneMinuteRate" ], "resultAlias":"MessagesInPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "MessagesInPerSec"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchConsumer", "attr" : [ "Count" ], "resultAlias":"RequestsPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"request" : "FetchConsumer"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchFollower", "attr" : [ "Count" ], "resultAlias":"RequestsPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"request" : "FetchFollower"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce", "attr" : [ "Count" ], "resultAlias":"RequestsPerSec", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"request" : "Produce"} } ] }, { "obj" : "java.lang:type=Memory", "attr" : [ "HeapMemoryUsage", "NonHeapMemoryUsage" ], "resultAlias":"MemoryUsage", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "MemoryUsage"} } ] }, { "obj" : "java.lang:type=GarbageCollector,name=*", "attr" : [ "CollectionCount","CollectionTime" ], "resultAlias":"GC", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "GC"} } ] }, { "obj" : "java.lang:type=Threading", "attr" : [ "PeakThreadCount","ThreadCount" ], "resultAlias":"Thread", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "Thread"} } ] }, { "obj" : "kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica", "attr" : [ "Value" ], "resultAlias":"ReplicaFetcherManager", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "MaxLag"} } ] }, { "obj" : "kafka.server:type=ReplicaManager,name=PartitionCount", "attr" : [ "Value" ], "resultAlias":"ReplicaManager", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "PartitionCount"} } ] }, { "obj" : "kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions", "attr" : [ "Value" ], "resultAlias":"ReplicaManager", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "UnderReplicatedPartitions"} } ] }, { "obj" : "kafka.server:type=ReplicaManager,name=LeaderCount", "attr" : [ "Value" ], "resultAlias":"ReplicaManager", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "LeaderCount"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchConsumer", "attr" : [ "Count","Max" ], "resultAlias":"TotalTimeMs", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "FetchConsumer"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchFollower", "attr" : [ "Count","Max" ], "resultAlias":"TotalTimeMs", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "FetchConsumer"} } ] }, { "obj" : "kafka.network:type=RequestMetrics,name=TotalTimeMs,request=Produce", "attr" : [ "Count","Max" ], "resultAlias":"TotalTimeMs", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "Produce"} } ] }, { "obj" : "kafka.server:type=ReplicaManager,name=IsrShrinksPerSec", "attr" : [ "Count" ], "resultAlias":"ReplicaManager", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "IsrShrinksPerSec"} } ] } ] } ] }
c、topic监控的配置文件,以falcon_monitor_us的10.10.20.14节点为例:
[[email protected] jmxtrans]# cat falcon_monitor_us_14.json { "servers" : [ { "port" : "9999", "host" : "10.10.20.14", "queries" : [ { "obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=falcon_monitor_us", "attr" : [ "Count" ], "resultAlias":"falcon_monitor_us", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "BytesInPerSec"} } ] }, { "obj" : "kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=falcon_monitor_us", "attr" : [ "Count" ], "resultAlias":"falcon_monitor_us", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "BytesOutPerSec"} } ] }, { "obj" : "kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=falcon_monitor_us", "attr" : [ "Count" ], "resultAlias":"falcon_monitor_us", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "MessagesInPerSec"} } ] }, { "obj" : "kafka.log:type=Log,name=LogEndOffset,topic=falcon_monitor_us,partition=*", "attr" : [ "Value" ], "resultAlias":"falcon_monitor_us", "outputWriters" : [ { "@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory", "url" : "http://10.10.10.10:8086/", "username" : "root", "password" : "root", "database" : "jmxDB", "tags" : {"application" : "LogEndOffset"} } ] } ] } ] }
2、Grafana配置
a、添加数据源
Url、Database、User、Password需要和jmxtrans采集数据配置文件里面的写一致,然后点击Save&Test,提示成功就正常了
b、创建一个dashboard,然后在这里配置每一个监控指标的图
c、要点说明
1、对于监控指标为Count的监控项,需要通过Grafana做计算得到我们想要的监控,比如BytesInPerSec这个指标,它的监控值是一个累计值,我们想要取到每秒的流量,肯定需要计算,(本次采集的值-上次采集的值)/60 ,jmxtrans是一分钟采集一次数据,具体配置参考下面截图:
因为我们是一分钟采集一次数据,所以group by 和derivative选1分钟;因为我们要每秒的流量,所以math这里除以60
2、X轴的单位选择,比如流量的单位、时间的单位、每秒消息的个数无单位等等,下面分布举一个例子介绍说明
设置流量的单位 ,点击需要设置的图,选择"Edit"进入编辑页面,切到Axes这个tab页,Unit--》data(Metric)--》bytes
设置时间的单位 ,点击需要设置的图,选择"Edit"进入编辑页面,切到Axes这个tab页,Unit--》time--》milliseconds(ms)
设置按原始值展示,无单位 ,点击需要设置的图,选择"Edit"进入编辑页面,切到Axes这个tab页,Unit--》none--》none
七、收获总结
1、关于jmx收集了kafka的那些指标,对应的值都是那些类型,对应这个问题走了很多弯路,各种谷歌百度拿到了有人整理过的,一个一个试,发现很多不能用,要不就是写的是错误的,要不就是版本不同,写法不一样,最后看到了jconsole这个工具,他可以连接到本地或者远程的jmx端口,能看到在收集的所有指标,在windows下装好jdk,在bin目录你可以找到这个工具。
2、关于consumer的延时,关官方介绍有一个type是 type=consumer-fetch-manager-metrics的指标,但是我这通过jconsole连进来死活没有找到,如果亲们有使用这套监控方案的,求帮忙解惑我的这个问题,谢了,官网监控指标如下:
http://kafka.apache.org/documentation/#monitoring
本文出自 “屌丝运维男” 博客,谢绝转载!
以上是关于kafka监控实战(jmxtrans+InfluxDb+Grafana)的主要内容,如果未能解决你的问题,请参考以下文章