21-hadoop-weibo推送广告

Posted bronk

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了21-hadoop-weibo推送广告相关的知识,希望对你有一定的参考价值。

1, tf-idf

计算每个人的词条中的重要度

 

需要3个mapreduce 的 job执行, 第一个计算 TF 和 n, 第二个计算 DF, 第三个代入公式计算结果值

1, 第一个job

package com.wenbronk.weibo;

import java.io.IOException;
import java.io.StringReader;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

/**
 * 第一个map, 计算 TF 和 N
 * 
 * @author root
 *
 */
public class FirstMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    /**
     * TF 在一个文章中出现的词频 N 总共多少文章
     * 按行传入
     */
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {

        String[] values = value.toString().trim().split("\\t");

        if (values.length >= 2) {
            String id = values[0].trim();
            String content = values[1].trim();
            
            // 分词
            StringReader stringReader = new StringReader(content);
            IKSegmenter ikSegmenter = new IKSegmenter(stringReader, true);
            Lexeme word = null;
            while ((word = ikSegmenter.next()) != null ) {
                String w = word.getLexemeText();
                context.write(new Text(w + "_" + id), new IntWritable(1));
            }
            context.write(new Text("count"), new IntWritable(1));
        }else {
            System.out.println(values.toString() + "---");
        }

    }

}

reduce

package com.wenbronk.weibo;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * 统计tf, n
 * @author root
 *
 */
public class FirstReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    @Override
    protected void reduce(Text arg0, Iterable<IntWritable> arg1,
            Reducer<Text, IntWritable, Text, IntWritable>.Context arg2) throws IOException, InterruptedException {
        
        int sum = 0;
        for (IntWritable intWritable : arg1) {
            sum += intWritable.get();
        }
        if (arg0.equals(new Text("count"))) {
            System.err.println(arg0.toString() + "---");
        }
        arg2.write(arg0, new IntWritable(sum));
    }
    
}

partition

package com.wenbronk.weibo;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

/**
 * 决定分区, 计划分4个, n一个, tf三个
 * @author root
 *
 */
public class FirstPartition extends HashPartitioner<Text, IntWritable>{

    @Override
    public int getPartition(Text key, IntWritable value, int numReduceTasks) {
        if (key.equals(new Text("count"))) {
            return 3;
        }else {
            return super.getPartition(key, value, numReduceTasks - 1);
        }
        
    }
    
}

mainJob

package com.wenbronk.weibo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FirstJob {

    public static void main(String[] args) {
        Configuration config = new Configuration();
        config.set("fs.defaults", "hdfs://192.168.208.106:8020");
        config.set("yarn.resourcemanager.hostname", "192.168.208.106");
//        config.set("maper.jar", "E:\\\\sxt\\\\target\\\\weibo1.jar");
        
        try {
            
            Job job = Job.getInstance(config);
            job.setJarByClass(FirstJob.class);
            job.setJobName("first");
            
            job.setPartitionerClass(FirstPartition.class);
            job.setMapperClass(FirstMapper.class);
            job.setNumReduceTasks(4);
            job.setCombinerClass(FirstReducer.class);
            job.setReducerClass(FirstReducer.class);

            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            
            FileInputFormat.addInputPath(job, new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo2.txt"));
            
            FileSystem fileSystem = FileSystem.get(config);
            
            Path outPath = new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo1");
            if (fileSystem.exists(outPath)) {
                fileSystem.delete(outPath);
            }
            FileOutputFormat.setOutputPath(job, outPath);
            
            boolean waitForCompletion = job.waitForCompletion(true);
            if (waitForCompletion) {
                System.out.println("first success");
            }
            
        }catch (Exception e) {
            e.printStackTrace();
        }
        
    }
    
}

2, 第二个

package com.wenbronk.weibo;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

/**
 * 计算 DFi的值, 在多少个文章中出现过
 *
 */
public class SecondMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        
        // 获取当前maptask的数据片段
        FileSplit inputSplit = (FileSplit) context.getInputSplit();
        
        // count不被统计
        if (!inputSplit.getPath().getName().contains("part-r-00003")) {
            
            String[] values = value.toString().trim().split("\\t");
            
            if (values.length >= 2) {
                String[] split = values[0].trim().split("_");
                if (split.length >= 2) {
                    String id = split[0];
                    context.write(new Text(id), new IntWritable(1));
                }
            }
        }else {
            System.out.println(value.toString() + "----");
        }
        
        
    }
    
}

reduce

package com.wenbronk.weibo;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * 
 * @author root
 *
 */
public class SecondReducer extends Reducer<Text, IntWritable, Text, IntWritable>{

    @Override
    protected void reduce(Text arg0, Iterable<IntWritable> arg1,
            Reducer<Text, IntWritable, Text, IntWritable>.Context arg2) throws IOException, InterruptedException {
        
        int sum = 0;
        for (IntWritable intWritable : arg1) {
            sum += intWritable.get();
        }
        arg2.write(new Text(arg0), new IntWritable(sum));
    }
    
}

mainjob

package com.wenbronk.weibo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class SecondJob {

    public static void main(String[] args) {
        Configuration config = new Configuration();
        config.set("fs.default", "hdfs://192.168.208.106:8020");
        config.set("yarn.resourcemanager.hostname", "192.168.208.106");
        
        try {
            
            Job job = Job.getInstance(config);
            job.setJarByClass(SecondJob.class);
            job.setJobName("second");
            
            job.setMapperClass(SecondMapper.class);
            job.setCombinerClass(SecondReducer.class);
            job.setReducerClass(SecondReducer.class);

            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            
            FileInputFormat.addInputPath(job, new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo1"));
            
            FileSystem fileSystem = FileSystem.get(config);
            Path outPath = new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo2");
            if (fileSystem.exists(outPath)) {
                fileSystem.delete(outPath);
            }
            FileOutputFormat.setOutputPath(job, outPath);
            
            boolean f = job.waitForCompletion(true);
            if (f) {
                System.out.println("job2 success");
            }
            
        }catch(Exception e) {
            e.printStackTrace();
        }
        
    }
    
}

3, 第三个Job

package com.wenbronk.weibo;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.text.NumberFormat;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class ThirdMapper extends Mapper<LongWritable, Text, Text, Text>{

    //存放微博总数, 将小数据缓存进内存, 预加载
        public static Map<String, Integer> cmap = null;
        //存放df
        public static Map<String, Integer> df = null;
        
        // 在初始化类时执行, 将数据预加载进map
        protected void setup(Context context)
                throws IOException, InterruptedException {
            
            System.out.println("*****");
            if (cmap == null || cmap.size() == 0 || df == null || df.size() == 0) {
                URI[] cacheFiles = context.getCacheFiles();
                if (cacheFiles != null) {
                    for (URI uri : cacheFiles) {
                        if (uri.getPath().endsWith("part-r-00003")) {
                            Path path = new Path(uri.getPath());
                            // 获取文件
                            Configuration configuration = context.getConfiguration();
                            FileSystem fs = FileSystem.get(configuration);
                            FSDataInputStream open = fs.open(path);
                            BufferedReader reader = new BufferedReader(new InputStreamReader(open));
                            
//                            BufferedReader reader = new BufferedReader(new FileReader(path.getName()));
                            String line = reader.readLine();
                            if (line.startsWith("count")) {
                                String[] split = line.split("\\t");
                                cmap = new HashMap<>();
                                cmap.put(split[0], Integer.parseInt(split[1].trim()));
                            }
                            reader.close();
                        }else if (uri.getPath().endsWith("part-r-00000")) {
                            df = new HashMap<>();
                            Path path = new Path(uri.getPath());
                            
                            // 获取文件
                            Configuration configuration = context.getConfiguration();
                            FileSystem fs = FileSystem.get(configuration);
                            FSDataInputStream open = fs.open(path);
                            BufferedReader reader = new BufferedReader(new InputStreamReader(open));
//                            BufferedReader reader = new BufferedReader(new FileReader(path.getName()));
                            
                            String line = null;
                            while ((line = reader.readLine()) != null) {
                                String[] ls = line.split("\\t");
                                df.put(ls[0], Integer.parseInt(ls[1].trim()));
                            }
                            reader.close();
                        }
                    }
                }
            }
        }
        
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            // 获取分片
            FileSplit inputSplit = (FileSplit) context.getInputSplit();
            
            if (!inputSplit.getPath().getName().contains("part-r-00003")) {
                String[] values = value.toString().trim().split("\\t");
                
                if (values.length >= 2) {
                    
                    int tf = Integer.parseInt(values[1].trim());
                    
                    String[] ss = values[0].split("_");
                    if (ss.length >= 2) {
                        String word = ss[0];
                        String id = ss[1];
                        
                        // 公式
                        Double s = tf * Math.log(cmap.get("count")) / df.get(word);
                        NumberFormat format = NumberFormat.getInstance();
                        // 取小数点后5位
                        format.setMaximumFractionDigits(5);
                        
                        context.write(new Text(id), new Text(word + ": " + format.format(s)));
                    }else {
                        System.out.println(value.toString() + "------");
                    }
                }
            }
        }
}

reduce

package com.wenbronk.weibo;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class ThirdReducer extends Reducer<Text, Text, Text, Text>{

    @Override
    protected void reduce(Text arg0, Iterable<Text> arg1, Reducer<Text, Text, Text, Text>.Context arg2)
            throws IOException, InterruptedException {
        
        StringBuffer sb = new StringBuffer();
        for (Text text : arg1) {
            sb.append(text.toString() + "\\t");
        }
        arg2.write(arg0, new Text(sb.toString()));
    }
    
}

mainJob

package com.wenbronk.weibo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class ThirdJob {

    public static void main(String[] args) {
        
        Configuration config = new Configuration();
        config.set("fs.defaults", "hdfs://192.168.208.106:8020");
        config.set("yarn.resourcemanager.hostname", "192.168.208.106");
        try {
            Job job = Job.getInstance(config); 
            job.setJarByClass(ThirdJob.class);
            job.setJobName("third");
//            job.setInputFormatClass(KeyValueTextInputFormat.class);
            
            //把微博总数加载到内存
            job.addCacheFile(new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo1\\\\part-r-00003").toUri());
            //把df加载到内存
            job.addCacheFile(new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo2\\\\part-r-00000").toUri());
            
            job.setMapperClass(ThirdMapper.class);
            job.setReducerClass(ThirdReducer.class);
            
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            
            FileSystem fs = FileSystem.get(config);
            FileInputFormat.addInputPath(job, new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo1"));
            Path path = new Path("E:\\\\sxt\\\\1-MapReduce\\\\data\\\\weibo3");
            if (fs.exists(path)) {
                fs.delete(path);
            }
            FileOutputFormat.setOutputPath(job, path);
            
            boolean waitForCompletion = job.waitForCompletion(true);
            if(waitForCompletion) {
                System.out.println("执行job成功");
            }
        }catch (Exception e) {
            e.printStackTrace();
        }
    }
    
}

 

 

 系列来自尚学堂视频

以上是关于21-hadoop-weibo推送广告的主要内容,如果未能解决你的问题,请参考以下文章

谷歌广告推送的核心技术是啥?

如何从静态片段中显示Admob插页式广告?

真的很讨厌安卓手机app推送广告,还有启动就要获取你手机号等各项信息,怎么屏蔽?

关闭百度广告联盟广告推送

无良斐讯路由器强制推送广告

MIUI(ADUI)关闭广告推送步骤方法