Python文档阅读笔记-Number Plate Recognition with OpenCV and EasyOCR

Posted IT1995

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python文档阅读笔记-Number Plate Recognition with OpenCV and EasyOCR相关的知识,希望对你有一定的参考价值。

此篇博文将带领大家使用OpenCV和EasyOCR包进行车牌识别。

EasyOCR是Python的一个开源包用于进行图片文字识别也就是OCR(Optical Character Recognition)。

这个包用起来非常简单,并且他支持80种语言,其中就包括中文、英文、阿拉伯语等。

安装EasyOCR

使用如下命令:

pip install easyocr

注意,在本博文写的时候(2022-02-28)OpenCV版本4.5.5.62和EasyOCR不兼容。所以需要使用OpenCV4.5.4.60。

使用下面的命令进行安装:

pip install opencv-python==4.5.4.60

 随后安装opencv-contrib-python:

pip install opencv-contrib-python==4.5.4.60

如果已经安装得有opencv-python和opencv-contrib-python可以使用如下命令进行反安装:

pip uninstall opencv-python
pip uninstall opencv-contrib-python

然后再重新安装:

pip install opencv-python==4.5.4.60

车牌号识别

创建一个Python文件,并添加如下代码:

from easyocr import Reader
import cv2

# load the image and resize it
image = cv2.imread('image1.jpg')
image = cv2.resize(image, (800, 600))

首先需要导入依赖包,然后重新设置下图片的大小。

随后初始化图片:

# convert the input image to grayscale,
# blur it, and detect the edges 
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
blur = cv2.GaussianBlur(gray, (5,5), 0) 
edged = cv2.Canny(blur, 10, 200) 
cv2.imshow('Canny', edged)
cv2.waitKey(0)
cv2.destroyAllWindows()

下面是预处理下图片

# convert the input image to grayscale,
# blur it, and detect the edges 
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
blur = cv2.GaussianBlur(gray, (5,5), 0) 
edged = cv2.Canny(blur, 10, 200) 
cv2.imshow('Canny', edged)
cv2.waitKey(0)
cv2.destroyAllWindows()

首先将图片转换为灰度图,再通过高斯滤波删除一些干扰信息,最后进行边缘检测。

输出的图片如下:

下面,通过通过边缘检测的轮廓,获取车牌的轮廓:

# find the contours, sort them, and keep only the 5 largest ones
contours, _ = cv2.findContours(edged, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:5]

# loop over the contours
for c in contours:
    # approximate each contour
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.02 * peri, True)
    # if the contour has 4 points, we can say
    # that we have found our license plate
    if len(approx) == 4:
        n_plate_cnt = approx
        break        

# get the bounding box of the contour and 
# extract the license plate from the image
(x, y, w, h) = cv2.boundingRect(n_plate_cnt)
license_plate = gray[y:y + h, x:x + w]

 上面的代码目的是从边缘图片中找到轮廓,范围大小是从0到5。

如果找到有4个轮廓的,就说明发现车牌位置了。

最后就可以从车牌中提取号码了

现在所有初始化工作都做好了,下面使用EeayOCR进行文字识别。

# initialize the reader object
reader = Reader(['en'])
# detect the text from the license plate
detection = reader.readtext(license_plate)

if len(detection) == 0:
    # if the text couldn't be read, show a custom message
    text = "Impossible to read the text from the license plate"
    cv2.putText(image, text, (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 3)
    cv2.imshow('Image', image)
    cv2.waitKey(0)
else:
    # draw the contour and write the detected text on the image
    cv2.drawContours(image, [n_plate_cnt], -1, (0, 255, 0), 3)
    text = f"detection[0][1] detection[0][2] * 100:.2f%"
    cv2.putText(image, text, (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 2)
    # display the license plate and the output image
    cv2.imshow('license plate', license_plate)
    cv2.imshow('Image', image)
    cv2.waitKey(0)

 

首先初始化Reader对象,然后调用readtext函数,其中的参数,传找到的车牌号。

调用完后返回值包含3个元素:

元素1:要识别文字的边界框。

元素2:图片中文字被识别成什么;

元素3:识别可信度;

如果返回为0,说明什么也没找到,什么也没识别出来,这里程序会出现一个提示框。

如果识别成功,程序会将识别到的信息,也就是那3个元素,显示到车牌旁。

如下:

上面是成功的,但这个例子是失败的:

4143KZM被识别成了41L3KZM。

原因是只用图像识别来识别车牌是很有局限性的。所以,这种车牌,需要有和其他技术进行搭配。

下面也有个识别错误的例子:

原因的光线问题,在识别中,拍照也是一门技术活。不然图片初始化,获取车牌位置就不会成功。

以上是关于Python文档阅读笔记-Number Plate Recognition with OpenCV and EasyOCR的主要内容,如果未能解决你的问题,请参考以下文章

Python文档阅读笔记-PyAutoGUI基本使用

Python文档阅读笔记-OpenCV中Match Shapes

Python文档阅读笔记-Turn Images into Cartoons using Python

Python文档阅读笔记-Turn Images into Cartoons using Python

Python文档阅读笔记-Turn Images into Cartoons using Python

Python文档阅读笔记-OpenCV中Template Matching