大数据问题归纳
Posted LiuHheng0315
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据问题归纳相关的知识,希望对你有一定的参考价值。
HashMap 的扩容机制
final Node<K,V>[] resize() { // 当前table保存 Node<K,V>[] oldTab = table; // 保存table大小 int oldCap = (oldTab == null) ? 0 : oldTab.length; // 保存当前阈值 int oldThr = threshold; int newCap, newThr = 0; // 之前table大小大于0 if (oldCap > 0) { // 之前table大于最大容量 if (oldCap >= MAXIMUM_CAPACITY) { // 阈值为最大整形 threshold = Integer.MAX_VALUE; return oldTab; } // 容量翻倍,使用左移,效率更高 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) // 阈值翻倍 newThr = oldThr << 1; // double threshold } // 之前阈值大于0 else if (oldThr > 0) newCap = oldThr; // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步) else { newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 新阈值为0 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) // 初始化table Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; // 之前的table已经初始化过 if (oldTab != null) { // 复制元素,重新进行hash for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
当插入的元素超过阈值时会进行resize(),在不超过最大容器的时,大小扩大为以前的2倍,并对key重新进行hash,使其分布均匀。
假设我们的capacity大小为32,loadFator为0.75,则threshold为24 = 32 * 0.75,此时,插入了25个元素,并且插入的这25个元素都在同一个桶中,桶中的数据结构为红黑树,则还有31个桶是空的,也会进行扩容处理,其实,此时,还有31个桶是空的,好像似乎不需要进行扩容处理,但是是需要扩容处理的,因为此时我们的capacity大小可能不适当。我们前面知道,扩容处理会遍历所有的元素,时间复杂度很高;前面我们还知道,经过一次扩容处理后,元素会更加均匀的分布在各个桶中,会提升访问效率。所以,说尽量避免进行扩容处理,也就意味着,遍历元素所带来的坏处大于元素在桶中均匀分布所带来的好处。
ConcurrnetHashMap 的原理
HashTable是一个线程安全的类,它使用synchronized来锁住整张Hash表来实现线程安全,即每次锁住整张表让线程独占。ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的Hashtable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。
ConcurrnetHashMap 的原理 连接:http://www.cnblogs.com/leesf456/p/5453341.html
以上是关于大数据问题归纳的主要内容,如果未能解决你的问题,请参考以下文章