推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战
Posted 汀、
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战相关的知识,希望对你有一定的参考价值。
0.前言
「排序学习(Learning to Rank,LTR)」,也称「机器排序学习(Machine-learned Ranking,MLR)」 ,就是使用机器学习的技术解决排序问题。自从机器学习的思想逐步渗透到信息检索等领域之后,如何利用机器学习来提升信息检索的性能水平变成了近些年来非常热门的研究话题,因此产生了各类基于机器学习的排序算法,也带来了搜索引擎技术的成熟和发展,如今,Learning to Rank已经成为搜索、推荐和广告领域非常重要的技术手段。
本文我们首先介绍排序学习的三种主要类别,然后详细介绍推荐领域最常用的两种高层排序学习算法框架:BPR和LambdaMART。因为排序学习的算法和实践大都来源于信息检索,一些理论也必须从信息检索的领域说起,所以本文也会涉及一些的信息检索、搜索方面的理论知识,但重点依然会放在推荐领域排序学习的应用思路。
0.1 排序学习
传统的排序方法可粗略分为基于相似度和基于重要性进行排序两大类,早期基于相关度的模型,通常利用 query 和 doc 之间的词共现特性(如布尔模型)、VSM(如 TF-IDF、LSI)、概率排序思想(如BM25、LMIR)等方式。基于重要性的模型,利用的是 doc 本身的重要性,如 PageRank、TrustRank 等。在之前《基于内容的推荐算法》和《文本内容分析算法》两篇文章中,稍有涉及其中的知识点。
传统的检索模型所考虑的因素并不多,主要是利用词频、逆文档频率和文档长度、文档重要度这几个因子来人工拟合排序公式,且其中大多数模型都包含参数,也就需要通过不断的实验确定最佳的参数组合,以此来形
以上是关于推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战的主要内容,如果未能解决你的问题,请参考以下文章
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V0:腾讯音乐全民K歌推荐系统架构及粗排设计
推荐系统[八]算法实践总结V1:淘宝逛逛and阿里飞猪个性化推荐:召回算法实践总结冷启动召回复购召回用户行为召回等算法实战
推荐系统[八]算法实践总结V4:混排算法在淘宝信息流第四代混排调控框架实战,提升推荐实时性捕捉实时兴趣。