机器学习系列_逻辑回归应用之Kaggle泰坦尼克之灾

Posted 寒小阳

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习系列_逻辑回归应用之Kaggle泰坦尼克之灾相关的知识,希望对你有一定的参考价值。

作者: 寒小阳
时间:2015年11月。
出处:http://blog.csdn.net/han_xiaoyang/article/details/49797143
声明:版权所有,转载请注明出处,谢谢。

1.引言

先说一句,年末双十一什么的一来,真是非(mang)常(cheng)欢(gou)乐(le)!然后push自己抽出时间来写这篇blog的原因也非常简单:

  • 写完前两篇逻辑回归的介绍和各个角度理解之后,我们讨论群(戳我入群)的小伙伴们纷纷表示『好像很高级的样纸,but 然并卵 啊!你们倒是拿点实际数据来给我们看看,这玩意儿 有!什!么!用!啊!』
  • talk is cheap, show me the code!
  • no example say a jb!

OK,OK,这就来了咯,同学们别着急,我们先找个简单的实际例子,来看看,所谓的数据挖掘或者机器学习实际应用到底是怎么样一个过程。

『喂,那几个说要看大数据上机器学习应用的,对,就是说你们!别着急好么,我们之后拉点大一点实际数据用liblinear或者spark,MLlib跑给你们看,行不行?咱们先拿个实例入入门嘛』

好了,我是一个严肃的技术研究和分享者,咳咳,不能废话了,各位同学继续往下看吧!

2.背景

2.1 关于Kaggle

  • 我是Kaggle地址,翻我牌子
  • 亲,逼格这么高的地方,你一定听过对不对?是!这就是那个无数『数据挖掘先驱』们,在回答"枪我有了,哪能找到靶子练练手啊?"时候的答案!
  • 这是一个要数据有数据,要实际应用场景有场景,要一起在数据挖掘领域high得不要不要的小伙伴就有小伙伴的地方啊!!!

艾玛,逗逼模式开太猛了。恩,不闹,不闹,说正事,Kaggle是一个数据分析建模的应用竞赛平台,有点类似KDD-CUP(国际知识发现和数据挖掘竞赛),企业或者研究者可以将问题背景、数据、期望指标等发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方案。而热爱数(dong)据(shou)挖(zhe)掘(teng)的小伙伴们可以下载/分析数据,使用统计/机器学习/数据挖掘等知识,建立算法模型,得出结果并提交,排名top的可能会有奖金哦!

2.2 关于泰坦尼克号之灾

  • 带大家去该问题页面溜达一圈吧

    • 下面是问题背景页
    • 下面是可下载Data的页面
    • 下面是小伙伴们最爱的forum页面,你会看到各种神级人物厉(qi)害(pa)的数据处理/建模想法,你会直视『世界真奇妙』。
  • 泰坦尼克号问题之背景

    • 就是那个大家都熟悉的『Jack and Rose』的故事,豪华游艇倒了,大家都惊恐逃生,可是救生艇的数量有限,无法人人都有,副船长发话了『lady and kid first!』,所以是否获救其实并非随机,而是基于一些背景有rank先后的

    • 训练和测试数据是一些乘客的个人信息以及存活状况,要尝试根据它生成合适的模型并预测其他人的存活状况

    • 对,这是一个二分类问题,是我们之前讨论的logistic regression所能处理的范畴。

3.说明

接触过Kaggle的同学们可能知道这个问题,也可能知道RandomForest和SVM等等算法,甚至还对多个模型做过融合,取得过非常好的结果,那maybe这篇文章并不是针对你的,你可以自行略过。

我们因为之前只介绍了Logistic Regression这一种分类算法。所以本次的问题解决过程和优化思路,都集中在这种算法上。其余的方法可能我们之后的文章里会提到。

说点个人的观点。不一定正确。
『解决一个问题的方法和思路不止一种』
『没有所谓的机器学习算法优劣,也没有绝对高性能的机器学习算法,只有在特定的场景、数据和特征下更合适的机器学习算法。』

4.怎么做?

手把手教程马上就来,先来两条我看到的,觉得很重要的经验。

  1. 印象中Andrew Ng老师似乎在coursera上说过,应用机器学习,千万不要一上来就试图做到完美,先撸一个baseline的model出来,再进行后续的分析步骤,一步步提高,所谓后续步骤可能包括『分析model现在的状态(欠/过拟合),分析我们使用的feature的作用大小,进行feature selection,以及我们模型下的bad case和产生的原因』等等。

  2. Kaggle上的大神们,也分享过一些experience,说几条我记得的哈:

    • 『对数据的认识太重要了!』
    • 『数据中的特殊点/离群点的分析和处理太重要了!』
    • 『特征工程(feature engineering)太重要了!在很多Kaggle的场景下,甚至比model本身还要重要』
    • 『要做模型融合(model ensemble)啊啊啊!』

更多的经验分享请加讨论群,具体方式请联系作者,或者参见《“ML学分计划”说明书》

5.初探数据

先看看我们的数据,长什么样吧。在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据。

import pandas as pd #数据分析
import numpy as np #科学计算
from pandas import Series,DataFrame

data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv")
data_train

pandas是常用的python数据处理包,把csv文件读入成dataframe各式,我们在ipython notebook中,看到data_train如下所示:

这就是典型的dataframe格式,如果你没接触过这种格式,完全没有关系,你就把它想象成Excel里面的列好了。
我们看到,总共有12列,其中Survived字段表示的是该乘客是否获救,其余都是乘客的个人信息,包括:

  • PassengerId => 乘客ID
  • Pclass => 乘客等级(1/2/3等舱位)
  • Name => 乘客姓名
  • Sex => 性别
  • Age => 年龄
  • SibSp => 堂兄弟/妹个数
  • Parch => 父母与小孩个数
  • Ticket => 船票信息
  • Fare => 票价
  • Cabin => 客舱
  • Embarked => 登船港口

逐条往下看,要看完这么多条,眼睛都有一种要瞎的赶脚。好吧,我们让dataframe自己告诉我们一些信息,如下所示:

data_train.info()

看到了如下的信息:

上面的数据说啥了?它告诉我们,训练数据中总共有891名乘客,但是很不幸,我们有些属性的数据不全,比如说:

  • Age(年龄)属性只有714名乘客有记录
  • Cabin(客舱)更是只有204名乘客是已知的

似乎信息略少啊,想再瞄一眼具体数据数值情况呢?恩,我们用下列的方法,得到数值型数据的一些分布(因为有些属性,比如姓名,是文本型;而另外一些属性,比如登船港口,是类目型。这些我们用下面的函数是看不到的):

我们从上面看到更进一步的什么信息呢?
mean字段告诉我们,大概0.383838的人最后获救了,2/3等舱的人数比1等舱要多,平均乘客年龄大概是29.7岁(计算这个时候会略掉无记录的)等等…

6.数据初步分析

每个乘客都这么多属性,那我们咋知道哪些属性更有用,而又应该怎么用它们啊?说实话这会儿我也不知道,但我们记得前面提到过

  • 『对数据的认识太重要了!』
  • 『对数据的认识太重要了!』
  • 『对数据的认识太重要了!』

重要的事情说三遍,恩,说完了。仅仅最上面的对数据了解,依旧无法给我们提供想法和思路。我们再深入一点来看看我们的数据,看看每个/多个 属性和最后的Survived之间有着什么样的关系呢。

6.1 乘客各属性分布

脑容量太有限了…数值看花眼了。我们还是统计统计,画些图来看看属性和结果之间的关系好了,代码如下:

import matplotlib.pyplot as plt
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数

plt.subplot2grid((2,3),(0,0))             # 在一张大图里分列几个小图
data_train.Survived.value_counts().plot(kind='bar')# 柱状图 
plt.title(u"获救情况 (1为获救)") # 标题
plt.ylabel(u"人数")  

plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")

plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train.Survived, data_train.Age)
plt.ylabel(u"年龄")                         # 设定纵坐标名称
plt.grid(b=True, which='major', axis='y') 
plt.title(u"按年龄看获救分布 (1为获救)")


plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')   
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph.


plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title(u"各登船口岸上船人数")
plt.ylabel(u"人数")  
plt.show()

bingo,图还是比数字好看多了。所以我们在图上可以看出来,被救的人300多点,不到半数;3等舱乘客灰常多;遇难和获救的人年龄似乎跨度都很广;3个不同的舱年龄总体趋势似乎也一致,2/3等舱乘客20岁多点的人最多,1等舱40岁左右的最多(→_→似乎符合财富和年龄的分配哈,咳咳,别理我,我瞎扯的);登船港口人数按照S、C、Q递减,而且S远多于另外俩港口。

这个时候我们可能会有一些想法了:

  • 不同舱位/乘客等级可能和财富/地位有关系,最后获救概率可能会不一样
  • 年龄对获救概率也一定是有影响的,毕竟前面说了,副船长还说『小孩和女士先走』呢
  • 和登船港口是不是有关系呢?也许登船港口不同,人的出身地位不同?

口说无凭,空想无益。老老实实再来统计统计,看看这些属性值的统计分布吧。

6.2 属性与获救结果的关联统计

#看看各乘客等级的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数

Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()
df=pd.DataFrame(u'获救':Survived_1, u'未获救':Survived_0)
df.plot(kind='bar', stacked=True)
plt.title(u"各乘客等级的获救情况")
plt.xlabel(u"乘客等级") 
plt.ylabel(u"人数") 
plt.show()

啧啧,果然,钱和地位对舱位有影响,进而对获救的可能性也有影响啊←_←
咳咳,跑题了,我想说的是,明显等级为1的乘客,获救的概率高很多。恩,这个一定是影响最后获救结果的一个特征。

#看看各性别的获救情况
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数

Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts()
Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts()
df=pd.DataFrame(u'男性':Survived_m, u'女性':Survived_f)
df.plot(kind='bar', stacked=True)
plt.title(u"按性别看获救情况")
plt.xlabel(u"性别") 
plt.ylabel(u"人数")
plt.show()

歪果盆友果然很尊重lady,lady first践行得不错。性别无疑也要作为重要特征加入最后的模型之中。

再来个详细版的好了。


 #然后我们再来看看各种舱级别情况下各性别的获救情况
fig=plt.figure()
fig.set(alpha=0.65) # 设置图像透明度,无所谓
plt.title(u"根据舱等级和性别的获救情况")

ax1=fig.add_subplot(141)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479')
ax1.set_xticklabels([u"获救", u"未获救"], rotation=0)
ax1.legend([u"女性/高级舱"], loc='best')

ax2=fig.add_subplot(142, sharey=ax1)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink')
ax2.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"女性/低级舱"], loc='best')

ax3=fig.add_subplot(143, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class',color='lightblue')
ax3.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/高级舱"], loc='best')

ax4=fig.add_subplot(144, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue')
ax4.set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"男性/低级舱"], loc='best')

plt.show()

恩,坚定了之前的判断。

我们看看各登船港口的获救情况。

fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数

Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts()
df=pd.DataFrame(u'获救':Survived_1, u'未获救':Survived_0)
df.plot(kind='bar', stacked=True)
plt.title(u"各登录港口乘客的获救情况")
plt.xlabel(u"登录港口") 
plt.ylabel(u"人数") 

plt.show()

下面我们来看看 堂兄弟/妹,孩子/父母有几人,对是否获救的影响。


g = data_train.groupby(['SibSp','Survived'])
df = pd.DataFrame(g.count()['PassengerId'])
print df

g = data_train.groupby(['SibSp','Survived'])
df = pd.DataFrame(g.count()['PassengerId'])
print df

好吧,没看出特别特别明显的规律(为自己的智商感到捉急…),先作为备选特征,放一放。


#ticket是船票编号,应该是unique的,和最后的结果没有太大的关系,先不纳入考虑的特征范畴把
#cabin只有204个乘客有值,我们先看看它的一个分布
data_train.Cabin.value_counts()

部分结果如下:

这三三两两的…如此不集中…我们猜一下,也许,前面的ABCDE是指的甲板位置、然后编号是房间号?…好吧,我瞎说的,别当真…

关键是Cabin这鬼属性,应该算作类目型的,本来缺失值就多,还如此不集中,注定是个棘手货…第一感觉,这玩意儿如果直接按照类目特征处理的话,太散了,估计每个因子化后的特征都拿不到什么权重。加上有那么多缺失值,要不我们先把Cabin缺失与否作为条件(虽然这部分信息缺失可能并非未登记,maybe只是丢失了而已,所以这样做未必妥当),先在有无Cabin信息这个粗粒度上看看Survived的情况好了。


fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数

Survived_cabin = data_train.Survived[pd.notnull(data_train.Cabin)].value_counts()
Survived_nocabin = data_train.Survived[pd.isnull(data_train.Cabin)].value_counts()
df=pd.DataFrame(u'有':Survived_cabin, u'无':Survived_nocabin).transpose()
df.plot(kind='bar', stacked=True)
plt.title(u"按Cabin有无看获救情况")
plt.xlabel(u"Cabin有无") 
plt.ylabel(u"人数")
plt.show()

咳咳,有Cabin记录的似乎获救概率稍高一些,先这么着放一放吧。

7.简单数据预处理

大体数据的情况看了一遍,对感兴趣的属性也有个大概的了解了。
下一步干啥?咱们该处理处理这些数据,为机器学习建模做点准备了。

对了,我这里说的数据预处理,其实就包括了很多Kaggler津津乐道的feature engineering过程,灰常灰常有必要!

『特征工程(feature engineering)太重要了!』
『特征工程(feature engineering)太重要了!』
『特征工程(feature engineering)太重要了!』

恩,重要的事情说三遍。

先从最突出的数据属性开始吧,对,Cabin和Age,有丢失数据实在是对下一步工作影响太大。

先说Cabin,暂时我们就按照刚才说的,按Cabin有无数据,将这个属性处理成Yes和No两种类型吧。

再说Age:

通常遇到缺值的情况,我们会有几种常见的处理方式

  • 如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了
  • 如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征中
  • 如果缺值的样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个step(比如这里的age,我们可以考虑每隔2/3岁为一个步长),然后把它离散化,之后把NaN作为一个type加到属性类目中。
  • 有些情况下,缺失的值个数并不是特别多,那我们也可以试着根据已有的值,拟合一下数据,补充上。

本例中,后两种处理方式应该都是可行的,我们先试试拟合补全吧(虽然说没有特别多的背景可供我们拟合,这不一定是一个多么好的选择)

我们这里用scikit-learn中的RandomForest来拟合一下缺失的年龄数据(注:RandomForest是一个用在原始数据中做不同采样,建立多颗DecisionTree,再进行average等等来降低过拟合现象,提高结果的机器学习算法,我们之后会介绍到)


from sklearn.ensemble import RandomForestRegressor
 
### 使用 RandomForestClassifier 填补缺失的年龄属性
def set_missing_ages(df):
    
    # 把已有的数值型特征取出来丢进Random Forest Regressor中
    age_df = df[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]

    # 乘客分成已知年龄和未知年龄两部分
    known_age = age_df[age_df.Age.notnull()].as_matrix()
    unknown_age = age_df[age_df.Age.isnull()].as_matrix()

    # y即目标年龄
    y = known_age[:, 0]

    # X即特征属性值
    X = known_age[:, 1:]

    # fit到RandomForestRegressor之中
    rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1)
    rfr.fit(X, y)
    
    # 用得到的模型进行未知年龄结果预测
    predictedAges = rfr.predict(unknown_age[:, 1::])
    
    # 用得到的预测结果填补原缺失数据
    df.loc[ (df.Age.isnull()), 'Age' ] = predictedAges 
    
    return df, rfr

def set_Cabin_type(df):
    df.loc[ (df.Cabin.notnull()), 'Cabin' ] = "Yes"
    df.loc[ (df.Cabin.isnull()), 'Cabin' ] = "No"
    return df

data_train, rfr = set_missing_ages(data_train)
data_train = set_Cabin_type(data_train)

恩。目的达到,OK了。

因为逻辑回归建模时,需要输入的特征都是数值型特征,我们通常会先对类目型的特征因子化。
什么叫做因子化呢?举个例子:

以Cabin为例,原本一个属性维度,因为其取值可以是[‘yes’,‘no’],而将其平展开为’Cabin_yes’,'Cabin_no’两个属性

  • 原本Cabin取值为yes的,在此处的"Cabin_yes"下取值为1,在"Cabin_no"下取值为0
  • 原本Cabin取值为no的,在此处的"Cabin_yes"下取值为0,在"Cabin_no"下取值为1

我们使用pandas的"get_dummies"来完成这个工作,并拼接在原来的"data_train"之上,如下所示。


dummies_Cabin = pd.get_dummies(data_train['Cabin'], prefix= 'Cabin')

dummies_Embarked = pd.get_dummies(data_train['Embarked'], prefix= 'Embarked')

dummies_Sex = pd.get_dummies(data_train['Sex'], prefix= 'Sex')

dummies_Pclass = pd.get_dummies(data_train['Pclass'], prefix= 'Pclass')

df = pd.concat([data_train, dummies_Cabin, dummies_Embarked, dummies_Sex, dummies_Pclass], axis=1)
df.drop(['Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True)
df

bingo,我们很成功地把这些类目属性全都转成0,1的数值属性了。

这样,看起来,是不是我们需要的属性值都有了,且它们都是数值型属性呢。

有一种临近结果的宠宠欲动感吧,莫急莫急,我们还得做一些处理,仔细看看Age和Fare两个属性,乘客的数值幅度变化,也忒大了吧!!如果大家了解逻辑回归与梯度下降的话,会知道,各属性值之间scale差距太大,

以上是关于机器学习系列_逻辑回归应用之Kaggle泰坦尼克之灾的主要内容,如果未能解决你的问题,请参考以下文章

Kaggle系列之预测泰坦尼克号人员的幸存与死亡(随机森林模型)

机器学习第一步——用逻辑回归及随机森林实现泰坦尼克号的生存预测

Kaggle经典测试,泰坦尼克号的生存预测,机器学习实验----02

Kaggle经典测试,泰坦尼克号的生存预测,机器学习实验----02

Kaggle竞赛丨入门手写数字识别之KNNCNN降维

EM算法(Expectation Maximization Algorithm)详解(附代码)---大道至简之机器学习系列---通俗理解EM算法。