presto查hive报错:end index must not be greater than size 问题分析和解决
Posted 涤生大数据
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了presto查hive报错:end index must not be greater than size 问题分析和解决相关的知识,希望对你有一定的参考价值。
tips
presto 0.208连接hive有不少坑,请尽量不要选择这个版本。presto0.208以上的版本,jdk需要8_151+。
问题还原:
集群环境
hive 1.1.0
presto 0.208
hadoop 2.6
集群有张hive表使用hive-cli查询是OK, 但是使用presto cli进行select * from table_name 同样的sql 语法查询会报错,报错核心如下:
java.lang.RuntimeException: Error fetching next at http://10.90.50.169:28080/v1/statement/20221117_120110_00027_yetvx/2 returned an invalid response: JsonResponsestatusCode=500, statusMessage=Internal Server Error, headers=content-length=[5070], content-type=[text/plain], date=[Mon, 17 Jun 2019 12:01:10 GMT], hasValue=false [Error: com.fasterxml.jackson.databind.JsonMappingException: end index (4) must not be greater than size (1) (through reference chain: com.facebook.presto.client.QueryResults["data"])
at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:379)
at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:339)
at com.fasterxml.jackson.databind.ser.std.StdSerializer.wrapAndThrow(StdSerializer.java:343)
at com.fasterxml.jackson.databind.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:698)
at com.fasterxml.jackson.databind.ser.BeanSerializer.serialize(BeanSerializer.java:155)
at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:292)
at com.fasterxml.jackson.databind.ObjectWriter$Prefetch.serialize(ObjectWriter.java:1419)
at com.fasterxml.jackson.databind.ObjectWriter.writeValue(ObjectWriter.java:940)
at io.airlift.jaxrs.JsonMapper.writeTo(JsonMapper.java:233)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.invokeWriteTo(WriterInterceptorExecutor.java:266)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.aroundWriteTo(WriterInterceptorExecutor.java:251)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.server.internal.JsonWithPaddingInterceptor.aroundWriteTo(JsonWithPaddingInterceptor.java:109)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.server.internal.MappableExceptionWrapperInterceptor.aroundWriteTo(MappableExceptionWrapperInterceptor.java:85)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.message.internal.MessageBodyFactory.writeTo(MessageBodyFactory.java:1135)
at org.glassfish.jersey.server.ServerRuntime$Responder.writeResponse(ServerRuntime.java:662)
at org.glassfish.jersey.server.ServerRuntime$Responder.processResponse(ServerRuntime.java:395)
at org.glassfish.jersey.server.ServerRuntime$Responder.process(ServerRuntime.java:385)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder$3.run(ServerRuntime.java:884)
at org.glassfish.jersey.internal.Errors$1.call(Errors.java:272)
at org.glassfish.jersey.internal.Errors$1.call(Errors.java:268)
at org.glassfish.jersey.internal.Errors.process(Errors.java:316)
at org.glassfish.jersey.internal.Errors.process(Errors.java:298)
at org.glassfish.jersey.internal.Errors.process(Errors.java:268)
at org.glassfish.jersey.process.internal.RequestScope.runInScope(RequestScope.java:289)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder.resume(ServerRuntime.java:916)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder.resume(ServerRuntime.java:872)
at io.airlift.http.server.AsyncResponseHandler$1.onSuccess(AsyncResponseHandler.java:102)
at com.google.common.util.concurrent.Futures$CallbackListener.run(Futures.java:1347)
at io.airlift.concurrent.BoundedExecutor.drainQueue(BoundedExecutor.java:78)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
后面进一步排查,发现presto-cli中,查询的sql只要指定部分int/bigint类型的字段就会报错,对其他string类型的字段不报错。
排查思路
step 1:
hive-cli中执行show create table table_name,得到表结构,并在自己的测试环境创建同样的表test_table;
step 2:
从hive表对应的hdfs文件出导出部分文件,在hive-cli中执行load data local 语句,导入抽样数据到test_table中;
step 3:
hive-cli和presto-cli中分别执行查询语句看问题是否复现
(hive-cli中 执行 select * from test_table limit 1, 返回结果正常, presto-cli中执行报错,问题复现,同时发现只有查询表中的int/bigint类型字段会出问题);
step 4:
step1的时候发现表内容的存储格式是orc ,所以执行 hive –orcfiledump /user/hive/warehouse/test_table/part-00000-4ae99c5d-9fec-47ab-a19c-c970f4ec40be-c000.snappy.orc 看orc文件的统计信息;
step4发现异常:table中定义为int,bigint类型的字段在步骤4的类型统计部分显示全部都是string类型,所以就怀疑是orc文件的文件部分字段类型和hive table中定义的不一致造成presto 在读取相关orc文件的时候报错。至于为什么hive-sql读取不报错,可我是hive对orc文件的处理和presto不一样吧。
抱着这样的猜想,决定去进行一次实验,去构建一个表结构定义和orc文件字段定义类型不一致的场景, 实验过程如下:
错误复现实验
创建测试表test_string
tips:这里创建test_string表是为了将表中的orc文件拷贝到另外的test_int
#建表测试
CREATE TABLE `test_string`(
`server` string,
`uid` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
/* 或者可以简写为如下
CREATE TABLE `test_string`(
`server` string,
`uid` string)
STORED AS orc
*/
#hive-cli中执行show create table test_string输出如下
CREATE TABLE `test_string`(
`server` string,
`uid` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://Ucluster/user/hive/warehouse/test_string'
TBLPROPERTIES (
'last_modified_by'='work',
'last_modified_time'='1560497239',
'transient_lastDdlTime'='1560772601')
#这里看到hive表的location在hdfs的/user/hive/warehouse/test_string目录
#向test_string表导入部分数据
insert into table test_string values ('server1', '1'),('server2', '2');
#退出hive-cli,查看test_string在hdfs上的orc文件信息概览
hadoop fs -ls /user/hive/warehouse/test_string (发现其下有一个000000_0,这是test_string的orc存储文件,输出如下)
Found 1 items
-rwxrwxrwt 3 root supergroup 323 2022-11-17 21:14 /user/hive/warehouse/test_string/000000_0
hive –orcfiledump /user/hive/warehouse/test_string/000000_0 (执行这个命令查看orc文件的概览信息, 输出如下):
Processing data file /user/hive/warehouse/test_string/000000_0 [length: 323]
Structure for /user/hive/warehouse/test_string/000000_0
File Version: 0.12 with ORC_135
Rows: 2
Compression: ZLIB
Compression size: 262144
Type: struct<server:string,uid:string> (这里可以看到orc文件每行有两个字段,server和uid,且都是string类型)
Stripe Statistics:
Stripe 1:
Column 0: count: 2 hasNull: false
Column 1: count: 2 hasNull: false min: server1 max: server2 sum: 14
Column 2: count: 2 hasNull: false min: 1 max: 2 sum: 2
File Statistics:
Column 0: count: 2 hasNull: false
Column 1: count: 2 hasNull: false min: server1 max: server2 sum: 14
Column 2: count: 2 hasNull: false min: 1 max: 2 sum: 2
Stripes:
Stripe: offset: 3 data: 32 rows: 2 tail: 51 index: 72
Stream: column 0 section ROW_INDEX start: 3 length 11
Stream: column 1 section ROW_INDEX start: 14 length 34
Stream: column 2 section ROW_INDEX start: 48 length 27
Stream: column 1 section DATA start: 75 length 15
Stream: column 1 section LENGTH start: 90 length 6
Stream: column 2 section DATA start: 96 length 5
Stream: column 2 section LENGTH start: 101 length 6
Encoding column 0: DIRECT
Encoding column 1: DIRECT_V2
Encoding column 2: DIRECT_V2
File length: 323 bytes
Padding length: 0 bytes
Padding ratio: 0%
创建测试表test_int
# create table (注意,这里创建表的uid字段是int类型)
CREATE TABLE `test_int`(
`server` string,
`uid` int)
STORED AS orc
此时,hive-cli中执行show create table test_int,输出内容内容如下:
CREATE TABLE `test_int`(
`server` string,
`uid` bigint)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://Ucluster/user/hive/warehouse/test_int'
试着将test_string表的hdfs orc文件移动到test_int表的location下(这里是hdfs://Ucluster/user/hive/warehouse/test_int)
load data inpath 'hdfs://Ucluster/user/hive/warehouse/test_string/000000_0' overwrite into table test_int;
此时退出hive-cli ,查看test_int表的orc文件概览信息
hive –orcfiledump /user/hive/warehouse/test_int/000000_0
Processing data file /user/hive/warehouse/test_int/000000_0 [length: 323]
Structure for /user/hive/warehouse/test_int/000000_0
File Version: 0.12 with ORC_135
Rows: 2
Compression: ZLIB
Compression size: 262144
Type: struct<server:string,uid:string>
Stripe Statistics:
Stripe 1:
Column 0: count: 2 hasNull: false
Column 1: count: 2 hasNull: false min: server1 max: server2 sum: 14
Column 2: count: 2 hasNull: false min: 1 max: 2 sum: 2
File Statistics:
Column 0: count: 2 hasNull: false
Column 1: count: 2 hasNull: false min: server1 max: server2 sum: 14
Column 2: count: 2 hasNull: false min: 1 max: 2 sum: 2
Stripes:
Stripe: offset: 3 data: 32 rows: 2 tail: 51 index: 72
Stream: column 0 section ROW_INDEX start: 3 length 11
Stream: column 1 section ROW_INDEX start: 14 length 34
Stream: column 2 section ROW_INDEX start: 48 length 27
Stream: column 1 section DATA start: 75 length 15
Stream: column 1 section LENGTH start: 90 length 6
Stream: column 2 section DATA start: 96 length 5
Stream: column 2 section LENGTH start: 101 length 6
Encoding column 0: DIRECT
Encoding column 1: DIRECT_V2
Encoding column 2: DIRECT_V2
File length: 323 bytes
Padding length: 0 bytes
Padding ratio: 0%
hive/presto查询结果对比
经过上面两个建表的步骤,我们就得到了一个符合预期的test_int表(表的定义中uid为int类型, 表的hdfs orc文件中的uid的类型为string。
# hive测试如下
hive> select * from test_int;
OK
server1 1
server2 2
Time taken: 4.186 seconds, Fetched: 2 row(s)
hive> select uid from test_int;
OK
1
2
Time taken: 0.178 seconds, Fetched: 2 row(s)
# presto测试如下
这里的10.90.50.169:28080为presto coordinator的主机名和监听端口,database使用默认的default库, 从结果发现,查询test_int表的string 类型字段是ok的,查询int类型的uid字段会报错。
./presto-cli –debug –server 10.90.50.169:28080 –catalog hive –schema default
# presto 查询string 类型的字段ok
presto:default> select server from test_int;
server
---------
server1
server2
(2 rows
测试重点来了!!!
# 查询int类型的字段报错,复现之前的问题。
presto:default> select uid from test_int;
java.lang.RuntimeException: Error fetching next at http://10.90.50.169:28080/v1/statement/20221117_133934_00034_yetvx/2 returned an invalid response: JsonResponsestatusCode=500, statusMessage=Internal Server Error, headers=content-length=[5070], content-type=[text/plain], date=[Mon, 17 Jun 2019 13:39:34 GMT], hasValue=false [Error: com.fasterxml.jackson.databind.JsonMappingException: end index (8) must not be greater than size (1) (through reference chain: com.facebook.presto.client.QueryResults["data"])
at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:379)
at com.fasterxml.jackson.databind.JsonMappingException.wrapWithPath(JsonMappingException.java:339)
at com.fasterxml.jackson.databind.ser.std.StdSerializer.wrapAndThrow(StdSerializer.java:343)
at com.fasterxml.jackson.databind.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:698)
at com.fasterxml.jackson.databind.ser.BeanSerializer.serialize(BeanSerializer.java:155)
at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:292)
at com.fasterxml.jackson.databind.ObjectWriter$Prefetch.serialize(ObjectWriter.java:1419)
at com.fasterxml.jackson.databind.ObjectWriter.writeValue(ObjectWriter.java:940)
at io.airlift.jaxrs.JsonMapper.writeTo(JsonMapper.java:233)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.invokeWriteTo(WriterInterceptorExecutor.java:266)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.aroundWriteTo(WriterInterceptorExecutor.java:251)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.server.internal.JsonWithPaddingInterceptor.aroundWriteTo(JsonWithPaddingInterceptor.java:109)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.server.internal.MappableExceptionWrapperInterceptor.aroundWriteTo(MappableExceptionWrapperInterceptor.java:85)
at org.glassfish.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:163)
at org.glassfish.jersey.message.internal.MessageBodyFactory.writeTo(MessageBodyFactory.java:1135)
at org.glassfish.jersey.server.ServerRuntime$Responder.writeResponse(ServerRuntime.java:662)
at org.glassfish.jersey.server.ServerRuntime$Responder.processResponse(ServerRuntime.java:395)
at org.glassfish.jersey.server.ServerRuntime$Responder.process(ServerRuntime.java:385)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder$3.run(ServerRuntime.java:884)
at org.glassfish.jersey.internal.Errors$1.call(Errors.java:272)
at org.glassfish.jersey.internal.Errors$1.call(Errors.java:268)
at org.glassfish.jersey.internal.Errors.process(Errors.java:316)
at org.glassfish.jersey.internal.Errors.process(Errors.java:298)
at org.glassfish.jersey.internal.Errors.process(Errors.java:268)
at org.glassfish.jersey.process.internal.RequestScope.runInScope(RequestScope.java:289)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder.resume(ServerRuntime.java:916)
at org.glassfish.jersey.server.ServerRuntime$AsyncResponder.resume(ServerRuntime.java:872)
at io.airlift.http.server.AsyncResponseHandler$1.onSuccess(AsyncResponseHandler.java:102)
at com.google.common.util.concurrent.Futures$CallbackListener.run(Futures.java:1347)
at io.airlift.concurrent.BoundedExecutor.drainQueue(BoundedExecutor.java:78)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.IndexOutOfBoundsException: end index (8) must not be greater than size (1)
at io.airlift.slice.Preconditions.checkPositionIndexes(Preconditions.java:81)
at io.airlift.slice.Slice.checkIndexLength(Slice.java:1267)
at io.airlift.slice.Slice.getLong(Slice.java:479)
at com.facebook.presto.spi.block.AbstractVariableWidthBlock.getLong(AbstractVariableWidthBlock.java:63)
at com.facebook.presto.spi.type.BigintType.getObjectValue(BigintType.java:38)
at com.facebook.presto.server.protocol.RowIterable$RowIterator.computeNext(RowIterable.java:77)
at com.facebook.presto.server.protocol.RowIterable$RowIterator.computeNext(RowIterable.java:50)
at com.google.common.collect.AbstractIterator.tryToComputeNext(AbstractIterator.java:141)
at com.google.common.collect.AbstractIterator.hasNext(AbstractIterator.java:136)
at com.google.common.collect.Iterators$ConcatenatedIterator.hasNext(Iterators.java:1331)
at com.google.common.collect.Iterators$1.hasNext(Iterators.java:136)
at com.fasterxml.jackson.databind.ser.std.IterableSerializer.serializeContents(IterableSerializer.java:83)
at com.fasterxml.jackson.databind.ser.std.IterableSerializer.serialize(IterableSerializer.java:74)
at com.fasterxml.jackson.databind.ser.std.IterableSerializer.serialize(IterableSerializer.java:12)
at com.fasterxml.jackson.databind.ser.std.StdDelegatingSerializer.serialize(StdDelegatingSerializer.java:170)
at com.fasterxml.jackson.databind.ser.BeanPropertyWriter.serializeAsField(BeanPropertyWriter.java:693)
at com.fasterxml.jackson.databind.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:690)
... 31 more
]
at com.facebook.presto.client.StatementClientV1.requestFailedException(StatementClientV1.java:436)
at com.facebook.presto.client.StatementClientV1.advance(StatementClientV1.java:383)
at com.facebook.presto.cli.StatusPrinter.printInitialStatusUpdates(StatusPrinter.java:123)
at com.facebook.presto.cli.Query.renderQueryOutput(Query.java:137)
at com.facebook.presto.cli.Query.renderOutput(Query.java:121)
at com.facebook.presto.cli.Console.process(Console.java:312)
at com.facebook.presto.cli.Console.runConsole(Console.java:256)
at com.facebook.presto.cli.Console.run(Console.java:146)
at com.facebook.presto.cli.Presto.main(Presto.java:31)
Query is gone (server restarted?)
测试总结
如果想让hive以orc格式存储的表能正常在presto中查询,最好保证orc文件的字段类型定义和create table时的定义一致,否则,有可能会造成hive-cli中查询正常,在presto-cli 中查询异常的情况。特别是在从别处拷贝orc文件过来的时候,需要先做一下类型比对。
ps: 为何hive-cli中查询可以兼容字段类型不一致,而presto中确不行,就需要看presto的源码了。之前从网上看文档,presto在读取hdfs orc文件是进行了一些优化的,有了解细节的大大可以告诉我一声哈。另,测试是发现,test_int表在hive中查询uid字段,如果有非法字段,会显示为null。
以上是关于presto查hive报错:end index must not be greater than size 问题分析和解决的主要内容,如果未能解决你的问题,请参考以下文章
presto查hive报错:end index must not be greater than size 问题分析和解决