R语言使用psych包进行主成分分析PCA和探索性因子分析EFA的常用函数介绍:principalfafa.parallelfactor.plotfa.diagramscree

Posted Data+Science+Insight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言使用psych包进行主成分分析PCA和探索性因子分析EFA的常用函数介绍:principalfafa.parallelfactor.plotfa.diagramscree相关的知识,希望对你有一定的参考价值。

R语言使用psych包进行主成分分析PCA和探索性因子分析EFA的常用函数介绍:principal、fa、fa.parallel、factor.plot、fa.diagram、scree

目录

以上是关于R语言使用psych包进行主成分分析PCA和探索性因子分析EFA的常用函数介绍:principalfafa.parallelfactor.plotfa.diagramscree的主要内容,如果未能解决你的问题,请参考以下文章

R语言使用psych包的principal函数对指定数据集进行主成分分析PCA进行数据降维(输入数据为原始数据)使用nfactors参数指定抽取的主成分的个数principal函数结果解读

R语言使用psych包的principal函数对指定数据集进行主成分分析PCA进行数据降维(输入数据为相关性矩阵)计算主成分评分系数每个样本(观察)的主成分得分由主成分分数系数构建的公式得到

R语言使用psych包的principal函数对指定数据集进行主成分分析PCA进行数据降维(输入数据为原始数据)计算每个样本(观察)的主成分的分数计算得分与特定变量的相关性并解读结果

[读书笔记] R语言实战 (十四) 主成分和因子分析

R语言主成分分析(PCA)加“置信椭圆”

主成分分析(PCA)原理及R语言实现