[翻译]HyperLedger下一代总账架构提案
Posted 李赫的博客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[翻译]HyperLedger下一代总账架构提案相关的知识,希望对你有一定的参考价值。
[翻译]Next-Ledger-Architecture-Proposal
原文:https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Ledger-Architecture-Proposal.md
翻译:梧桐树
草案 / 进行中
该文档是基于社区反馈的未来ledger架构的一个提案。 所有的输入都是社区努力的目标。
目录
目的
探索新ledger架构的动机来自于社区反馈。现存的ledger可以支持一些(但不是所有)下面的需求,我们要探索一种新的ledger来满足已经了解的所有需求。 根据在很多社区(Slack、Github等)及面对面的讨论,很显然,大家强烈希望支持以下需求:
- 时间点查询 - 在上一区块查询chaincode state,容易跟踪没有重放交易的谱系
- 像SQL一样的的查询语言
- 隐私 - 完整的ledger可能不会存在于所有的committers
- 加密的安全ledger - 数据完整性不参照其他节点
- 支持像PBFT那样提供即时终结的共识算法
- 支持像PoW、PoET那样需要随机收敛的共识算法
- 裁剪 - 根据需要删除旧的交易数据
- 支持背书从共识中分离,详情见 下一代共识架构提案。 这意味着,某些peer在没有执行交易或查看chaincode逻辑的情况下想他们的ledger申请背书结果。
- API / Enginer 分离。按需插入不同的存储引擎。
API
以Go伪代码写成的建议API
package ledger
import "github.com/hyperledger/fabric/protos"
// Encryptor is an interface that a ledger implementation can use for Encrypt/Decrypt the chaincode state
type Encryptor interface
Encrypt([]byte) []byte
Decrypt([]byte) []byte
// PeerMgmt is an interface that a ledger implementation expects from peer implementation
//
type PeerMgmt interface
// IsPeerEndorserFor returns 'true' if the peer is endorser for given chaincodeID
IsPeerEndorserFor(chaincodeID string) bool
// ListEndorsingChaincodes return the chaincodeIDs for which the peer acts as one of the endorsers
ListEndorsingChaincodes() []string
// GetEncryptor returns the Encryptor for the given chaincodeID
GetEncryptor(chaincodeID string) (Encryptor, error)
// In the case of a confidential chaincode, the simulation results from ledger are expected to be encrypted using the 'Encryptor' corresponding to the chaincode.
// Similarly, the blocks returned by the GetBlock(s) method of the ledger are expected to have the state updates in the encrypted form.
// However, internally, the ledger can maintain the latest and historical state for the chaincodes for which the peer is one of the endorsers - in plain text form.
// TODO - Is this assumption correct?
// General purpose interface for forcing a data element to be serializable/de-serializable
type DataHolder interface
GetData() interface
GetBytes() []byte
DecodeBytes(b []byte) interface
type SimulationResults interface
DataHolder
type QueryResult interface
DataHolder
type BlockHeader struct
type PrunePolicy interface
type BlockRangePrunePolicy struct
FirstBlockHash string
LastBlockHash string
// QueryExecutor executes the queries
// Get* methods are for supporting KV-based data model. ExecuteQuery method is for supporting a rich datamodel and query support
//
// ExecuteQuery method in the case of a rich data model is expected to support queries on
// latest state, historical state and on the intersection of state and transactions
type QueryExecutor interface
GetState(key string) ([]byte, error)
GetStateRangeScanIterator(startKey string, endKey string) (ResultsIterator, error)
GetStateMultipleKeys(keys []string) ([][]byte, error)
GetTransactionsForKey(key string) (ResultsIterator, error)
ExecuteQuery(query string) (ResultsIterator, error)
// TxSimulator simulates a transaction on a consistent snapshot of the as recent state as possible
type TxSimulator interface
QueryExecutor
StartNewTx()
// KV data model
SetState(key string, value []byte)
DeleteState(key string)
SetStateMultipleKeys(kvs map[string][]byte)
// for supporting rich data model (see comments on QueryExecutor above)
ExecuteUpdate(query string)
// This can be a large payload
CopyState(sourceChaincodeID string) error
// GetTxSimulationResults encapsulates the results of the transaction simulation.
// This should contain enough detail for
// - The update in the chaincode state that would be caused if the transaction is to be committed
// - The environment in which the transaction is executed so as to be able to decide the validity of the enviroment
// (at a later time on a different peer) during committing the transactions
// Different ledger implementation (or configurations of a single implementation) may want to represent the above two pieces
// of information in different way in order to support different data-models or optimize the information representations.
// TODO detailed illustration of a couple of representations.
GetTxSimulationResults() SimulationResults
HasConflicts() bool
Clear()
type ResultsIterator interface
// Next moves to next key-value. Returns true if next key-value exists
Next() bool
// GetKeyValue returns next key-value
GetResult() QueryResult
// Close releases resources occupied by the iterator
Close()
// Ledger represents the 'final ledger'. In addition to implement the methods inherited from the BasicLedger,
// it provides the handle to objects for querying the chaincode state and executing chaincode transactions.
type ValidatedLedger interface
Ledger
// NewTxSimulator gives handle to a transaction simulator for given chaincode and given fork (represented by blockHash)
// A client can obtain more than one 'TxSimulator's for parallel execution. Any synchronization should be performed at the
// implementation level if required
NewTxSimulator(chaincodeID string, blockHash string) (TxSimulator, error)
// NewQueryExecuter gives handle to a query executer for given chaincode and given fork (represented by blockHash)
// A client can obtain more than one 'QueryExecutor's for parallel execution. Any synchronization should be performed at the
// implementation level if required
NewQueryExecuter(chaincodeID string, blockHash string) (QueryExecutor, error)
// CheckpointPerformed is expected to be invoked by the consensus algorithm when it completes a checkpoint across peers
// On the invoke of this method, the block in the 'RawLedger' between the 'corresponding to the block currently checkpointed' and
// 'corresponding to the block checkpointed last time' can be pruned.
// (Pruning the raw blocks would need an additional time based factor as well, if forks are to be supported in the raw ledger.)
// (Does raw ledger in the case of a consensus that allow forks (e.g., PoW) make sense at all? Or practically, these consensus
// would always produce the final blocks that contains validated transactions).
CheckpointPerformed(blockHash string)
RemoveInvalidTransactions(block *protos.Block) (*protos.Block, error)
// RawLedger implements methods required by 'raw ledger'
// CommitBlock() of RawLedger is expected to be invoked by the consensus algorithm when a new block is constructed.
// Upon receiving the new block, it is expected to be 'processed' by the ledger - the processing includes -
// preserving the raw block, validating each transaction in the block, discarding the invalid transactions,
// preparing the final block with the rmaining (i.e. valid) transactions and committing the final block (including updating the state).
// The raw block should not be deleted as yet - until the corresponding 'final block' is included in one of the following checkpoint performed by the consensus.
type RawLedger interface
Ledger
//Ledger captures the methods that are common across the 'raw ledger' and the 'final ledger'
type Ledger interface
//GetTopBlockHashes returns the hashes of the top most block in each fork.
GetTopBlockHashes() []string
//CommitBlock adds a new block
CommitBlock(block *protos.Block) error
//GetTransactionByID retrieves a transaction by id
GetTransactionByID(txID string) (*protos.Transaction, error)
//GetBlockChain returns an instance of chain that starts at the
GetBlockChain(topBlockHash string) (BlockChain, error)
//Prune prunes the blocks/transactions that satisfy the given policy
Prune(policy PrunePolicy) error
//BlockChain represents an instance of a block chain. In the case of a consensus algorithm that could cause a fork, an instance of BlockChain
// represent one of the forks (i.e., one of the chains starting from the genesis block to the one of the top most blocks)
type BlockChain interface
GetTopBlockHash() string
GetBlockchainInfo() (*protos.BlockchainInfo, error)
GetBlockHeaders(startingBlockHash, endingBlockHash string) []*BlockHeader
GetBlocks(startingBlockHash, endingBlockHash string) []*protos.Block
GetBlockByNumber(blockNumber uint64) *protos.Block
GetBlocksByNumber(startingBlockNumber, endingBlockNumber uint64) []*protos.Block
GetBlockchainSize() uint64
VerifyChain(highBlock, lowBlock uint64) (uint64, error)
Engine 具体思路
时间点查询
在抽象的时间方面,有三种查询对chaincode和应用开发者非常重要:
- 查询一个key的最新value。(类型: 当前; 例如,现在Alice的账户里有多少钱?)
- 查询一个key在某一特定时间的value。(类型: 历史; 例如,在上个月Alice的账户余额是多少?)
- 查询一个key随着时间变化的所有value。(类型: 系列; 例如,生成Alice的交易列表。)
当制定一个查询时,开发人员将受益于过滤、预测以及交易间关联等功能。考虑下面的例子:
- 简单过滤:查询所有上个月余额低于100美元的账户。
- 复杂过滤:查询所有Trudy的,发生在叙利亚或伊拉克的,总量大于一个阈值的,其他部分的名称匹配一个正则表达式的交易。
- 关联:确定是否Alice在同一天同一加油站买过不止一次油。将此信息输入诈骗检测模型。
- 预测: 查询Alice最后10个交易的市、州、国和金额。这些信息被输入风险/欺诈检测模型。
查询语言
开发一种查询语言来支持不同的查询范围并不简单。面临的挑战:
- 随着开发人员需求的增长扩展查询语言。截至目前,开发人员的请求已经不大。随着Hyperledger项目的用户增加,查询将更复杂。
- 两个不太相关的类的查询:
- 查询符合约束的单一value。适合现有的SQL和NoSQL语法。
- 查询满足约束的交易的一个chain或者多个chain。适合图形查询语言,如 Neo4J’s Cypher or SPARQL
以上是关于[翻译]HyperLedger下一代总账架构提案的主要内容,如果未能解决你的问题,请参考以下文章