塔形素数猜想
Posted lonelyrains
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了塔形素数猜想相关的知识,希望对你有一定的参考价值。
∀ p ∈ P , ∃ k ∈ N + , k < p p s . t . ∀ n ∈ N , f n ( p , k ) = p f n − 1 ( p , k ) − k ∈ P . ( 其 中 f 0 ( p , k ) = p p − k ) \\forall p \\in \\mathbbP , \\exists k \\in \\mathbbN^+, k < p^p s.t. \\forall n \\in \\mathbbN, f_n(p,k) = p^f_n-1(p,k)-k\\in \\mathbbP. (其中f_0(p,k)=p^p-k) ∀p∈P,∃k∈N+,k<pps.t.∀n∈N,fn(p,k)=pfn−1(p,k)−k∈P.(其中f0(p,k)=pp−k)
e
g
:
f
0
(
2
,
1
)
=
2
2
−
1
=
3
∈
P
eg:f_0(2,1) = 2^2-1 = 3 \\in \\mathbbP
eg:f0(2,1)=22−1=3∈P
f
1
(
2
,
1
)
=
2
f
0
(
2
,
1
)
−
1
=
2
3
−
1
=
7
∈
P
f_1(2,1) = 2^f_0(2,1)-1 = 2^3-1 = 7 \\in \\mathbbP
f1(2,1)=2f0(2,1)−1=23−1=7∈P
f
2
(
2
,
1
)
=
2
f
1
(
2
,
1
)
−
1
=
2
7
−
1
=
127
∈
P
f_2(2,1) = 2^f_1(2,1)-1 = 2^7-1 = 127 \\in \\mathbbP
f2(2,1)=2f1(2,1)−1=27−1=127∈P
f
3
(
2
,
1
)
=
2
f
2
(
2
,
1
)
−
1
=
2
127
−
1
∈
P
f_3(2,1) = 2^f_2(2,1)-1 = 2^127-1 \\in \\mathbbP
f3(2,1)=2f2(2,1)−1=2127−1∈P 第12个梅森素数
f
4
(
2
,
1
)
=
2
f
3
(
2
,
1
)
−
1
∈
P
?
f_4(2,1) = 2^f_3(2,1)-1 \\in \\mathbbP ?
f4(2,1)=2f3(2,1)−1∈P?
f
0
(
3
,
4
)
=
3
3
−
4
=
5
∈
P
f_0(3,4) = 3^3-4 = 5 \\in \\mathbbP
f0(3,4)=33−4=5∈P
f
1
(
3
,
4
)
=
3
f
0
(
3
,
4
)
−
1
=
3
5
−
4
=
239
∈
P
f_1(3,4) = 3^f_0(3,4)-1 = 3^5-4 = 239 \\in \\mathbbP
f1(3,4)=3f0(3,4)−1=35−4=239∈P
f
2
(
3
,
4
)
=
3
f
1
(
3
,
4
)
−
1
=
3
239
−
4
∈
P
?
f_2(3,4) = 3^f_1(3,4)-1 = 3^239-4 \\in \\mathbbP ?
f2(3,4)=3f1(3,4)−1=3239−4∈P?
以上是关于塔形素数猜想的主要内容,如果未能解决你的问题,请参考以下文章