EOJ Monthly 2021.9 Sponsored by TuSimple——A.Amazing.Discovery(分治or二次剩余)
Posted H-w-H
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EOJ Monthly 2021.9 Sponsored by TuSimple——A.Amazing.Discovery(分治or二次剩余)相关的知识,希望对你有一定的参考价值。
EOJ Monthly 2021.9 Sponsored by TuSimple
A.Amazing.Discovery
题意:
给出
a
,
b
,
n
a,b,n
a,b,n,求
S
=
(
a
+
b
)
n
+
(
a
−
b
)
n
(
m
o
d
p
)
S=(a+\\sqrt b)^n+(a-\\sqrt b)^n(mod~p)
S=(a+b)n+(a−b)n(mod p)
思路:
因为 b \\sqrt b b可能在模 m o d mod mod的情况下没有整数解。
解法1:
设 S n = ( a + b ) n + ( a − b ) n S_n=(a+\\sqrt b)^n+(a-\\sqrt b)^n Sn=(a+b)n+(a−b)n
则 S 2 n = ( a + b ) 2 n + ( a − b ) 2 n = S n 2 − 2 ( a + b ) n ( a − b ) n = S n 2 − 2 ( a 2 − b ) n S_2n=(a+\\sqrt b)^2n+(a-\\sqrt b)^2n=S_n^2-2(a+\\sqrt b)^n(a-\\sqrt b)^n=S_n^2-2(a^2-b)^n S2n=(a+b)2n+(a−b)2n=Sn2−2(a+b)n(a−b)n=Sn2−2(a2−b)n
则 S 2 n + 1 = ( a + b ) 2 n + 1 + ( a − b ) 2 n + 1 = S n S n + 1 − ( a + b ) n ( a − b ) n + 1 − ( a + b ) n + 1 ( a − b ) n = S n 2 − 2 a ( a 2 − b ) n S_2n+1=(a+\\sqrt b)^2n+1+(a-\\sqrt b)^2n+1=S_nS_n+1-(a+\\sqrt b)^n(a-\\sqrt b)^n+1-(a+\\sqrt b)^n+1(a-\\sqrt b)^n=S_n^2-2a(a^2-b)^n S2n+1=(a+b)2n+1+(a−b)2n+1=SnSn+1−(a+b)n(a−b)n+1−(a+b)n+1(a−b)n=Sn2−2a(a2−b)n
分奇数和偶数往下进行分治(记忆化一下,减少算的次数)
#include <bits/stdc++.h>
#define lson rt << 1
#define rson (rt << 1) | 1
using namespace std;
typedef long long ll;
const int mod = 998244353;
ll qpow(ll x, ll y)
ll ans = 1;
while(y)
if(y & 1) ans = ans * x % mod;
x = x * x % mod;
y >>= 1;
return ans;
map<ll, ll> mp;
ll solve(ll a, ll b, ll n)
if(mp.find(n) != mp.end()) return mp[n];
else if(n == 1) return mp[1] = 2ll*a;
else
if(n % 2 == 0)
ll tmp = solve(a, b, n/2);
return mp[n] = ((tmp * tmp % mod - 2ll * qpow((a*a%mod-b+mod)%mod, n/2) % mod) % mod + mod) % mod;
else
int k = n/2;
ll tmp1 = solve(a, b, k), tmp2 = solve(a, b, n-k);
return mp[n] = ((tmp1 * tmp2 % mod - 2ll * a % mod * qpow((a*a%mod-b+mod)%mod, n/2) % mod) % mod + mod) % mod;
int main()
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
ll a, b, n;
cin >> a >> b >> n;
cout << solve(a, b, n);
解法2:
用二次剩余 C i p o l l a Cipolla Cipolla算法中的类似复数域的东西可以直接求解。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;以上是关于EOJ Monthly 2021.9 Sponsored by TuSimple——A.Amazing.Discovery(分治or二次剩余)的主要内容,如果未能解决你的问题,请参考以下文章
矩阵快速幂EOJ EOJ Monthly 2021.9 Sponsored by TuSimple A. Amazing Discovery
矩阵快速幂EOJ EOJ Monthly 2021.9 Sponsored by TuSimple A. Amazing Discovery
EOJ Monthly 2021.9 Sponsored by TuSimple——A.Amazing.Discovery(分治or二次剩余)