深度学习相关论文阅读

Posted NodYoung

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习相关论文阅读相关的知识,希望对你有一定的参考价值。

目标检测

OverFeat

文章:《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks》

rcnn

代码:https://github.com/rbgirshick/rcnn,prototxt文件在\\rcnn-master\\finetuning\\voc_2012_prototxt

fast-rcnn

文章:《Fast R-CNN》
代码:https://github.com/rbgirshick/fast-rcnn,prototxt文件在.\\fast-rcnn-master\\models\\CaffeNet

faster-rcnn

文章:《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》
代码:https://github.com/rbgirshick/py-faster-rcnn,prototxt文件在.\\py-faster-rcnn-master\\models\\pascal_voc\\VGG16\\faster_rcnn_end2end
tensorflow的代码:tf-faster-rcnn代码理解

YOLO

文章:《You Only Look Once: Unified, Real-Time Object Detection》
代码:https://github.com/xingwangsfu/caffe-yolo
文章:《YOLO9000: Better, Faster, Stronger》

SSD

文章:《SSD: Single Shot MultiBox Detector》
代码:https://github.com/weiliu89/caffe/tree/ssd
由于SSD中需要运行python examples/ssd/ssd_pascal.py来生成solver.prototxt, train.prototxt, test.prototxt, deploy.prototxt。如果你没有硬件运行代码或嫌麻烦,可以在这里直接看https://gist.github.com/JeffOwOSun/1c284e6177c38b17d83da1db7b8c8ce7

FPN

文章:《Feature Pyramid Networks for Object Detection》

mask rcnn

文章:《Mask R-CNN》

语义分割

FCN

文章:《Fully Convolutional Networks for Semantic Segmentation》
代码:https://github.com/shekkizh/FCN.tensorflow

网络结构

VGG

文章:《Very Deep Convolutional Networks for Large-scale image recognition》

googleNet

文章:
Inception v1:《Going Deeper with Convolutions》
Inception v2:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate 》
Inception v3:《Rethinking the Inception Architecture for Computer Vision》

resnet

文章:《Deep Residual Learning for Image Recognition》
代码:https://github.com/KaimingHe/deep-residual-networks
补充文章:《Residual Networks Behave Like Ensembles of Relatively Shallow Networks》

技巧

梯度递减优化算法综述

《An overview of gradient descent optimization algorithms*》

dropout防止过拟合

《Dropout: A Simple Way to Prevent Neural Networks from
Overfitting》

其他

《Neural Style Transfer: A Review》

相关解读:神经风格迁移研究概述:从当前研究到未来方向(附论文和代码)

以上是关于深度学习相关论文阅读的主要内容,如果未能解决你的问题,请参考以下文章

深度学习相关阅读论文汇总(持续更新)

论文阅读|图神经网络+Actor-Critic求解静态JSP(End-to-End DRL)《基于深度强化学习的调度规则学习》(附带源码)

深度学习相关论文阅读

经典深度神经网络架构解析 - VGG,ResNet,Inception

论文阅读_神经网络知识蒸馏_DK

论文泛读166深度神经网络在阅读理解过程中进化出类人的注意力分布