递归生成格雷码
Posted OneDay-X
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了递归生成格雷码相关的知识,希望对你有一定的参考价值。
来自鹅厂的一道编程题,主要是想对比一下递归的复杂度问题,题目描述如下:
在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同, 则称这种编码为格雷码(Gray Code),请编写一个函数,使用递归的方法生成N位的格雷码。
给定一个整数n,请返回n位的格雷码,顺序为从0开始。
测试样例:
1
返回:[“0”,”1”]
递归的思路比较简单(列举n = 1, n = 2, n = 3也可以比较容易发现规律):就是n位gray码是由n-1位gray码生成,例如:
求n=3的gray码,首先知道n=2的gray码是(00,01,11,10),那么n=3的gray码其实就是对n=2的gray码首位添加0或1生成的,添加0后变成(000,001,011,010),添加1后需要顺序反向就变成(110,111,101,100)。组合在一起就是(000,001,011,010,110,111,101,100)
我最开始的实现:
class GrayCode
public:
vector<string> getGray(int n)
vector<string> result;
if (n == 1)
result.push_back("0");
result.push_back("1");
return result;
else
for (int i = 0; i < pow(2, n-1); i++)
result.push_back("0"+getGray(n-1)[i]);
for (int j = pow(2, n-1)-1; j >= 0; j--)
result.push_back("1"+getGray(n-1)[j]);
return result;
;
参考代码:
class GrayCode
public:
vector<string> getGray(int n)
// write code here
vector<string> gray;
if(n == 1)
gray.push_back("0");
gray.push_back("1");
return gray;
vector<string> last_gray = getGray(n-1);
for(int i = 0; i < last_gray.size(); i++)
gray.push_back("0"+last_gray[i]);
for(int i = last_gray.size()-1; i >= 0; i--)
gray.push_back("1"+last_gray[i]);
return gray;
;
才发现自己智障了。。。
以上是关于递归生成格雷码的主要内容,如果未能解决你的问题,请参考以下文章