TensorRT 系列 模型推理
Posted 洪流之源
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorRT 系列 模型推理相关的知识,希望对你有一定的参考价值。
推理代码:
// tensorRT include
#include <NvInfer.h>
#include <NvInferRuntime.h>
// cuda include
#include <cuda_runtime.h>
// system include
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <vector>
using namespace std;
// 上一节的代码
class TRTLogger : public nvinfer1::ILogger
public:
virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override
if(severity <= Severity::kINFO)
printf("%d: %s\\n", severity, msg);
logger;
nvinfer1::Weights make_weights(float* ptr, int n)
nvinfer1::Weights w;
w.count = n;
w.type = nvinfer1::DataType::kFLOAT;
w.values = ptr;
return w;
bool build_model()
TRTLogger logger;
// 这是基本需要的组件
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);
nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);
// 构建一个模型
/*
Network definition:
image
|
linear (fully connected) input = 3, output = 2, bias = True w=[[1.0, 2.0, 0.5], [0.1, 0.2, 0.5]], b=[0.3, 0.8]
|
sigmoid
|
prob
*/
const int num_input = 3;
const int num_output = 2;
float layer1_weight_values[] = 1.0, 2.0, 0.5, 0.1, 0.2, 0.5;
float layer1_bias_values[] = 0.3, 0.8;
nvinfer1::ITensor* input = network->addInput("image", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(1, num_input, 1, 1));
nvinfer1::Weights layer1_weight = make_weights(layer1_weight_values, 6);
nvinfer1::Weights layer1_bias = make_weights(layer1_bias_values, 2);
auto layer1 = network->addFullyConnected(*input, num_output, layer1_weight, layer1_bias);
auto prob = network->addActivation(*layer1->getOutput(0), nvinfer1::ActivationType::kSIGMOID);
// 将我们需要的prob标记为输出
network->markOutput(*prob->getOutput(0));
printf("Workspace Size = %.2f MB\\n", (1 << 28) / 1024.0f / 1024.0f);
config->setMaxWorkspaceSize(1 << 28);
builder->setMaxBatchSize(1);
nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
if(engine == nullptr)
printf("Build engine failed.\\n");
return false;
// 将模型序列化,并储存为文件
nvinfer1::IHostMemory* model_data = engine->serialize();
FILE* f = fopen("engine.trtmodel", "wb");
fwrite(model_data->data(), 1, model_data->size(), f);
fclose(f);
// 卸载顺序按照构建顺序倒序
model_data->destroy();
engine->destroy();
network->destroy();
config->destroy();
builder->destroy();
printf("Done.\\n");
return true;
vector<unsigned char> load_file(const string& file)
ifstream in(file, ios::in | ios::binary);
if (!in.is_open())
return ;
in.seekg(0, ios::end);
size_t length = in.tellg();
std::vector<uint8_t> data;
if (length > 0)
in.seekg(0, ios::beg);
data.resize(length);
in.read((char*)&data[0], length);
in.close();
return data;
void inference()
// ------------------------------ 1. 准备模型并加载 ----------------------------
TRTLogger logger;
auto engine_data = load_file("engine.trtmodel");
// 执行推理前,需要创建一个推理的runtime接口实例。与builer一样,runtime需要logger:
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);
// 将模型从读取到engine_data中,则可以对其进行反序列化以获得engine
nvinfer1::ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());
if(engine == nullptr)
printf("Deserialize cuda engine failed.\\n");
runtime->destroy();
return;
nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();
cudaStream_t stream = nullptr;
// 创建CUDA流,以确定这个batch的推理是独立的
cudaStreamCreate(&stream);
/*
Network definition:
image
|
linear (fully connected) input = 3, output = 2, bias = True w=[[1.0, 2.0, 0.5], [0.1, 0.2, 0.5]], b=[0.3, 0.8]
|
sigmoid
|
prob
*/
// ------------------------------ 2. 准备好要推理的数据并搬运到GPU ----------------------------
float input_data_host[] = 1, 2, 3;
float* input_data_device = nullptr;
float output_data_host[2];
float* output_data_device = nullptr;
cudaMalloc(&input_data_device, sizeof(input_data_host));
cudaMalloc(&output_data_device, sizeof(output_data_host));
cudaMemcpyAsync(input_data_device, input_data_host, sizeof(input_data_host), cudaMemcpyHostToDevice, stream);
// 用一个指针数组指定input和output在gpu中的指针。
float* bindings[] = input_data_device, output_data_device;
// ------------------------------ 3. 推理并将结果搬运回CPU ----------------------------
bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);
cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
printf("output_data_host = %f, %f\\n", output_data_host[0], output_data_host[1]);
// ------------------------------ 4. 释放内存 ----------------------------
printf("Clean memory\\n");
cudaStreamDestroy(stream);
execution_context->destroy();
engine->destroy();
runtime->destroy();
// ------------------------------ 5. 手动推理进行验证 ----------------------------
const int num_input = 3;
const int num_output = 2;
float layer1_weight_values[] = 1.0, 2.0, 0.5, 0.1, 0.2, 0.5;
float layer1_bias_values[] = 0.3, 0.8;
printf("手动验证计算结果:\\n");
for(int io = 0; io < num_output; ++io)
float output_host = layer1_bias_values[io];
for(int ii = 0; ii < num_input; ++ii)
output_host += layer1_weight_values[io * num_input + ii] * input_data_host[ii];
// sigmoid
float prob = 1 / (1 + exp(-output_host));
printf("output_prob[%d] = %f\\n", io, prob);
int main()
if(!build_model())
return -1;
inference();
return 0;
Makefile:
cc := g++
name := pro
workdir := workspace
srcdir := src
objdir := objs
stdcpp := c++11
cuda_home := /home/liuhongyuan/miniconda3/envs/trtpy/lib/python3.8/site-packages/trtpy/trt8cuda112cudnn8
syslib := /home/liuhongyuan/miniconda3/envs/trtpy/lib/python3.8/site-packages/trtpy/lib
cpp_pkg := /home/liuhongyuan/miniconda3/envs/trtpy/lib/python3.8/site-packages/trtpy/cpp-packages
cuda_arch :=
nvcc := $(cuda_home)/bin/nvcc -ccbin=$(cc)
# 定义cpp的路径查找和依赖项mk文件
cpp_srcs := $(shell find $(srcdir) -name "*.cpp")
cpp_objs := $(cpp_srcs:.cpp=.cpp.o)
cpp_objs := $(cpp_objs:$(srcdir)/%=$(objdir)/%)
cpp_mk := $(cpp_objs:.cpp.o=.cpp.mk)
# 定义cu文件的路径查找和依赖项mk文件
cu_srcs := $(shell find $(srcdir) -name "*.cu")
cu_objs := $(cu_srcs:.cu=.cu.o)
cu_objs := $(cu_objs:$(srcdir)/%=$(objdir)/%)
cu_mk := $(cu_objs:.cu.o=.cu.mk)
# 定义opencv和cuda需要用到的库文件
link_cuda := cudart cudnn
link_trtpro :=
link_tensorRT := nvinfer
link_opencv :=
link_sys := stdc++ dl
link_librarys := $(link_cuda) $(link_tensorRT) $(link_sys) $(link_opencv)
# 定义头文件路径,请注意斜杠后边不能有空格
# 只需要写路径,不需要写-I
include_paths := src \\
$(cuda_home)/include/cuda \\
$(cuda_home)/include/tensorRT \\
$(cpp_pkg)/opencv4.2/include
# 定义库文件路径,只需要写路径,不需要写-L
library_paths := $(cuda_home)/lib64 $(syslib) $(cpp_pkg)/opencv4.2/lib
# 把library path给拼接为一个字符串,例如a b c => a:b:c
# 然后使得LD_LIBRARY_PATH=a:b:c
empty :=
library_path_export := $(subst $(empty) $(empty),:,$(library_paths))
# 把库路径和头文件路径拼接起来成一个,批量自动加-I、-L、-l
run_paths := $(foreach item,$(library_paths),-Wl,-rpath=$(item))
include_paths := $(foreach item,$(include_paths),-I$(item))
library_paths := $(foreach item,$(library_paths),-L$(item))
link_librarys := $(foreach item,$(link_librarys),-l$(item))
# 如果是其他显卡,请修改-gencode=arch=compute_75,code=sm_75为对应显卡的能力
# 显卡对应的号码参考这里:https://developer.nvidia.com/zh-cn/cuda-gpus#compute
# 如果是 jetson nano,提示找不到-m64指令,请删掉 -m64选项。不影响结果
cpp_compile_flags := -std=$(stdcpp) -w -g -O0 -m64 -fPIC -fopenmp -pthread
cu_compile_flags := -std=$(stdcpp) -w -g -O0 -m64 $(cuda_arch) -Xcompiler "$(cpp_compile_flags)"
link_flags := -pthread -fopenmp -Wl,-rpath='$$ORIGIN'
cpp_compile_flags += $(include_paths)
cu_compile_flags += $(include_paths)
link_flags += $(library_paths) $(link_librarys) $(run_paths)
# 如果头文件修改了,这里的指令可以让他自动编译依赖的cpp或者cu文件
ifneq ($(MAKECMDGOALS), clean)
-include $(cpp_mk) $(cu_mk)
endif
$(name) : $(workdir)/$(name)
all : $(name)
run : $(name)
@cd $(workdir) && ./$(name) $(run_args)
$(workdir)/$(name) : $(cpp_objs) $(cu_objs)
@echo Link $@
@mkdir -p $(dir $@)
@$(cc) $^ -o $@ $(link_flags)
$(objdir)/%.cpp.o : $(srcdir)/%.cpp
@echo Compile CXX $<
@mkdir -p $(dir $@)
@$(cc) -c $< -o $@ $(cpp_compile_flags)
$(objdir)/%.cu.o : $(srcdir)/%.cu
@echo Compile CUDA $<
@mkdir -p $(dir $@)
@$(nvcc) -c $< -o $@ $(cu_compile_flags)
# 编译cpp依赖项,生成mk文件
$(objdir)/%.cpp.mk : $(srcdir)/%.cpp
@echo Compile depends C++ $<
@mkdir -p $(dir $@)
@$(cc) -M $< -MF $@ -MT $(@:.cpp.mk=.cpp.o) $(cpp_compile_flags)
# 编译cu文件的依赖项,生成cumk文件
$(objdir)/%.cu.mk : $(srcdir)/%.cu
@echo Compile depends CUDA $<
@mkdir -p $(dir $@)
@$(nvcc) -M $< -MF $@ -MT $(@:.cu.mk=.cu.o) $(cu_compile_flags)
# 定义清理指令
clean :
@rm -rf $(objdir) $(workdir)/$(name) $(workdir)/*.trtmodel
# 防止符号被当做文件
.PHONY : clean run $(name)
# 导出依赖库路径,使得能够运行起来
export LD_LIBRARY_PATH:=$(library_path_export)
重点提炼:
1. 必须使用createNetworkV2,并指定为1(表示显性batch),createNetwork已经废弃,非显性batch官方不推荐,这个方式直接影响推理时enqueue还是enqueueV2;
2. builder、config等指针,记得释放,否则会有内存泄漏,使用ptr->destroy()释放;
3. markOutput表示是该模型的输出节点,mark几次,就有几个输出,addInput几次就有几个输入;
4. workspaceSize是工作空间大小,某些layer需要使用额外存储时,不会自己分配空间,而是为了内存复用,直接找tensorRT要workspace空间;
5. 一定要记住,保存的模型只能适配编译时的trt版本、编译时指定的设备,也只能保证在这种配置下是最优的。如果用trt跨不同设备执行,有时候可以运行,但不是最优的,也不推荐;
6. bindings是tensorRT对输入输出张量的描述,bindings = input-tensor + output-tensor。比如input有a,output有b, c, d,那么bindings = [a, b, c, d],bindings[0] = a,bindings[2] = c;
7. enqueueV2是异步推理,加入到stream队列等待执行。输入的bindings则是tensors的指针(注意是device pointer);
8. createExecutionContext可以执行多次,允许一个引擎具有多个执行上下文。
以上是关于TensorRT 系列 模型推理的主要内容,如果未能解决你的问题,请参考以下文章
还在为模型加速推理发愁吗?不如看看这篇吧。手把手教你把pytorch模型转化为TensorRT,加速推理
极智AI | TensorRT Parser 构建模型推理方法