Sharding-JDBC读写分离探秘

Posted rhwayfunn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sharding-JDBC读写分离探秘相关的知识,希望对你有一定的参考价值。

前段时间写了篇如何使用Sharding-JDBC进行分库分表的例子,相信能够感受到Sharding-JDBC的强大了,而且使用配置都非常干净。官方支持的功能还包括读写分离、分布式主键、强制路由等。这里再介绍下如何在分库分表的基础上集成读写分离的功能。

读写分离的概念

就是为了缓解数据库压力,将写入和读取操作分离为不同数据源,写库称为主库,读库称为从库,一主库可配置多从库。

设置主从库后,第一个问题是如何进行主从的同步。官方不支持主从的同步,也不支持因为主从同步延迟导致的数据不一致问题。工程实践上进行主从同步有很多做法,一种常用的做法是每天定时同步或者实时同步。这个话题太大,暂不展开。

读写分离快速入门

读写可以单独使用,也可以配合分库分表进行使用,由于上个分库分表的例子是基于1.5.4.1版本进行说明的,这里为了紧跟官方的步伐,升级Sharding-JDBC到最新的2.0.0.M2

项目结构如下:

pom依赖

<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
        </dependency>

         <!-- Sharding-JDBC核心依赖 -->
        <dependency>
            <groupId>io.shardingjdbc</groupId>
            <artifactId>sharding-jdbc-core</artifactId>
        </dependency>

        <!-- Sharding-JDBC Spring Boot Starter -->
        <dependency>
            <groupId>io.shardingjdbc</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-configuration-processor</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

主从数据库配置

在配置前,我们希望分库分表规则和之前保持一致:

基于t_user表,根据city_id进行分库,如果city_id mod 2为奇数则落在ds_master_1库,偶数则落在ds_master_0库;根据user_id进行分表,如果user_id mod 2为奇数则落在t_user_1表,偶数则落在t_user_0

读写分离规则:

读都落在从库,写落在主库

因为使用Sharding-JDBC Spring Boot Starter,所以只需要在properties配置文件配置主从库的数据源即可:


spring.application.name=spring-boot-mybatis-sharding-jdbc-masterslave
server.context-path=/springboot

mybatis.config-location=classpath:mybatis-config.xml

# 所有主从库
sharding.jdbc.datasource.names=ds_master_0,ds_master_1,ds_master_0_slave_0,ds_master_0_slave_1,ds_master_1_slave_0,ds_master_1_slave_1

# ds_master_0
sharding.jdbc.datasource.ds_master_0.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_0.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_0.url=jdbc:mysql://127.0.0.1:3306/ds_master_0?useSSL=false
sharding.jdbc.datasource.ds_master_0.username=travis
sharding.jdbc.datasource.ds_master_0.password=

# slave for ds_master_0
sharding.jdbc.datasource.ds_master_0_slave_0.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_0_slave_0.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_0_slave_0.url=jdbc:mysql://127.0.0.1:3306/ds_master_0_slave_0?useSSL=false
sharding.jdbc.datasource.ds_master_0_slave_0.username=travis
sharding.jdbc.datasource.ds_master_0_slave_0.password=
sharding.jdbc.datasource.ds_master_0_slave_1.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_0_slave_1.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_0_slave_1.url=jdbc:mysql://127.0.0.1:3306/ds_master_0_slave_1?useSSL=false
sharding.jdbc.datasource.ds_master_0_slave_1.username=travis
sharding.jdbc.datasource.ds_master_0_slave_1.password=

# ds_master_1
sharding.jdbc.datasource.ds_master_1.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_1.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_1.url=jdbc:mysql://127.0.0.1:3306/ds_master_1?useSSL=false
sharding.jdbc.datasource.ds_master_1.username=travis
sharding.jdbc.datasource.ds_master_1.password=

# slave for ds_master_1
sharding.jdbc.datasource.ds_master_1_slave_0.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_1_slave_0.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_1_slave_0.url=jdbc:mysql://127.0.0.1:3306/ds_master_1_slave_0?useSSL=false
sharding.jdbc.datasource.ds_master_1_slave_0.username=travis
sharding.jdbc.datasource.ds_master_1_slave_0.password=
sharding.jdbc.datasource.ds_master_1_slave_1.type=com.alibaba.druid.pool.DruidDataSource
sharding.jdbc.datasource.ds_master_1_slave_1.driverClassName=com.mysql.jdbc.Driver
sharding.jdbc.datasource.ds_master_1_slave_1.url=jdbc:mysql://127.0.0.1:3306/ds_master_1_slave_1?useSSL=false
sharding.jdbc.datasource.ds_master_1_slave_1.username=travis
sharding.jdbc.datasource.ds_master_1_slave_1.password=

# 分库规则
sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column=city_id
sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-expression=ds_$city_id % 2

# 分表规则
sharding.jdbc.config.sharding.tables.t_user.actualDataNodes=ds_$0..1.t_user_$0..1
sharding.jdbc.config.sharding.tables.t_user.tableStrategy.inline.shardingColumn=user_id
sharding.jdbc.config.sharding.tables.t_user.tableStrategy.inline.algorithmExpression=t_user_$user_id % 2
# 使用user_id作为分布式主键
sharding.jdbc.config.sharding.tables.t_user.keyGeneratorColumnName=user_id

# 逻辑主从库名和实际主从库映射关系
sharding.jdbc.config.sharding.master-slave-rules.ds_0.masterDataSourceName=ds_master_0
sharding.jdbc.config.sharding.master-slave-rules.ds_0.slaveDataSourceNames=ds_master_0_slave_0, ds_master_0_slave_1
sharding.jdbc.config.sharding.master-slave-rules.ds_1.masterDataSourceName=ds_master_1
sharding.jdbc.config.sharding.master-slave-rules.ds_1.slaveDataSourceNames=ds_master_1_slave_0, ds_master_1_slave_1

Test

测试代码如下:


@RunWith(SpringRunner.class)
@SpringBootTest
public class UserMapperTest 

    /** Logger */
    private static Logger log = LoggerFactory.getLogger(UserMapperTest.class);

    @Resource
    private UserMapper userMapper;

    @Before
    public void setup() throws Exception 
        create();
        clear();
    

    private void create() throws SQLException 
        userMapper.createIfNotExistsTable();
    

    private void clear() 
        userMapper.truncateTable();
    

    @Test
    public void insert() throws Exception 
        UserEntity user = new UserEntity();
        user.setCityId(1);
        user.setUserName("insertTest");
        user.setAge(10);
        user.setBirth(new Date());
        assertTrue(userMapper.insert(user) > 0);
        Long userId = user.getUserId();
        log.info("Generated Key--userId:" + userId);
        userMapper.delete(userId);
    

    @Test
    public void find() throws Exception 
        UserEntity userEntity = userMapper.find(138734796783222784L);
        log.info("user:", userEntity);
    


先运行insert方法,插入一条数据后,获取插入的user_id138734796783222784L(每次运行会不一样),由于city_id=1,读写分离约定,会落在主库,又根据分库规则会落在ds_master_1,再根据分表规则,会落在t_user_0

再运行find方法,指定userId,你会发现查出来是空的,这是因为Sharding-JDBC不支持主从同步以及主从同步延迟造成的数据不一致。这里我们显然术语第一种,因为根本就没有进行主从同步,那么从从库读取肯定是空的。

我们可以反向推理下,假如开启了主从同步,现在数据落在主库ds_master_1,这个主库有两个从库:ds_master_1_slave_0ds_master_1_slave_1,所以我们可以往这两个主库的t_user_0表插入刚才的数据,语句如下:

INSERT INTO t_user_0(user_id,city_id,user_name,age,birth) values(138734796783222784,1,'insertTest',10,'2017-11-18 00:00:00');

先往ds_master_1_slave_0t_user_0表插入该条数据,可以理解为主库同步到从库的数据。重新运行find方法,发现返回的数据和主库的一致,表明Sharding-JDBC从ds_master_1的从库ds_master_1_slave_0t_user_0表查到了数据。

再删掉ds_master_1_slave_0t_user_0表的数据,往ds_master_1_slave_1t_user_0表插入刚才那条数据,重新运行发现返回的结果为空,表明从ds_master_1的从库ds_master_1_slave_1t_user_0表没有查到数据。

最后往ds_master_1_slave_0t_user_0表重新插入刚才的数据,再运行发现又返回了数据。

基于以上现象,可以推论选择从库查询的时候经过了某种算法得到访问的从库,然后在从库根据分表规则查询数据。

读写分离实现

这里包括几个问题:

  1. 读写分离的查询流程?
  2. 如何做结果归并?
  3. 如何路由到某个从库进行查询?
  4. 可以强制路由主库进行读操作吗?

读写分离的流程

  1. 获取主从库配置规则,数据源封装成MasterSlaveDataSource
  2. 根据路由计算,得到PreparedStatementUnit单元列表,合并每个PreparedStatementUnit的执行结果返回
  3. 执行每个PrepareStatementUnit的时候需要获取连接,这里根据轮询负载均衡算法RoundRobinMasterSlaveLoadBalanceAlgorithm得到从库数据源,拿到连接后就开始执行具体的SQL查询了,这里通过PreparedStatementExecutor.execute()得到执行结果
  4. 结果归并后返回

MasterSlaveDataSource:


public class MasterSlaveDataSource extends AbstractDataSourceAdapter 

    private static final ThreadLocal<Boolean> DML_FLAG = new ThreadLocal<Boolean>() 

        @Override
        protected Boolean initialValue() 
            return false;
        
    ;

    // 主从配置关系
    private MasterSlaveRule masterSlaveRule;

    public MasterSlaveDataSource(final MasterSlaveRule masterSlaveRule) throws SQLException 
        super(getAllDataSources(masterSlaveRule.getMasterDataSource(), masterSlaveRule.getSlaveDataSourceMap().values()));
        this.masterSlaveRule = masterSlaveRule;
    

    private static Collection<DataSource> getAllDataSources(final DataSource masterDataSource, final Collection<DataSource> slaveDataSources) 
        Collection<DataSource> result = new LinkedList<>(slaveDataSources);
        result.add(masterDataSource);
        return result;
    

    ...省略部分代码
// 获取数据源
public NamedDataSource getDataSource(final SQLType sqlType) 
        // 强制路由到主库查询
        if (isMasterRoute(sqlType)) 
            DML_FLAG.set(true);
            return new NamedDataSource(masterSlaveRule.getMasterDataSourceName(), masterSlaveRule.getMasterDataSource());
        
        // 获取选中的从库数据源
        String selectedSourceName = masterSlaveRule.getStrategy().getDataSource(masterSlaveRule.getName(), 
                masterSlaveRule.getMasterDataSourceName(), new ArrayList<>(masterSlaveRule.getSlaveDataSourceMap().keySet()));
        DataSource selectedSource = selectedSourceName.equals(masterSlaveRule.getMasterDataSourceName())
                ? masterSlaveRule.getMasterDataSource() : masterSlaveRule.getSlaveDataSourceMap().get(selectedSourceName);
        Preconditions.checkNotNull(selectedSource, "");
        return new NamedDataSource(selectedSourceName, selectedSource);
    

MasterSlaveRule:

public final class MasterSlaveRule 
    // 名称(这里是ds_0和ds_1)
    private final String name;

    // 主库数据源名称(这里是ds_master_0和ds_master_1)
    private final String masterDataSourceName;

    // 主库数据源
    private final DataSource masterDataSource;

    // 所属从库列表,key为从库数据源名称,value是真实的数据源
    private final Map<String, DataSource> slaveDataSourceMap;

    // 主从库负载均衡算法
    private final MasterSlaveLoadBalanceAlgorithm strategy;

RoundRobinMasterSlaveLoadBalanceAlgorithm:

// 轮询负载均衡策略,按照每个从节点访问次数均衡
public final class RoundRobinMasterSlaveLoadBalanceAlgorithm implements MasterSlaveLoadBalanceAlgorithm 

    private static final ConcurrentHashMap<String, AtomicInteger> COUNT_MAP = new ConcurrentHashMap<>();

    @Override
    public String getDataSource(final String name, final String masterDataSourceName, final List<String> slaveDataSourceNames) 
        AtomicInteger count = COUNT_MAP.containsKey(name) ? COUNT_MAP.get(name) : new AtomicInteger(0);
        COUNT_MAP.putIfAbsent(name, count);
        count.compareAndSet(slaveDataSourceNames.size(), 0);
        return slaveDataSourceNames.get(count.getAndIncrement() % slaveDataSourceNames.size());
    

DefaultResultSetHandler:


@Override
  public List<Object> handleResultSets(Statement stmt) throws SQLException 
    ErrorContext.instance().activity("handling results").object(mappedStatement.getId());

    // 返回的结果集
    final List<Object> multipleResults = new ArrayList<Object>();

    int resultSetCount = 0;
    ResultSetWrapper rsw = getFirstResultSet(stmt);

    List<ResultMap> resultMaps = mappedStatement.getResultMaps();
    int resultMapCount = resultMaps.size();
    validateResultMapsCount(rsw, resultMapCount);
    while (rsw != null && resultMapCount > resultSetCount) 
      ResultMap resultMap = resultMaps.get(resultSetCount);
      // 将ResultSetWrapper的结果集添加到multipleResults中
      handleResultSet(rsw, resultMap, multipleResults, null);
      rsw = getNextResultSet(stmt);
      cleanUpAfterHandlingResultSet();
      resultSetCount++;
    

    String[] resultSets = mappedStatement.getResultSets();
    if (resultSets != null) 
      while (rsw != null && resultSetCount < resultSets.length) 
        ResultMapping parentMapping = nextResultMaps.get(resultSets[resultSetCount]);
        if (parentMapping != null) 
          String nestedResultMapId = parentMapping.getNestedResultMapId();
          ResultMap resultMap = configuration.getResultMap(nestedResultMapId);
          handleResultSet(rsw, resultMap, null, parentMapping);
        
        rsw = getNextResultSet(stmt);
        cleanUpAfterHandlingResultSet();
        resultSetCount++;
      
    

    return collapseSingleResultList(multipleResults);
  


private void handleResultSet(ResultSetWrapper rsw, ResultMap resultMap, List<Object> multipleResults, ResultMapping parentMapping) throws SQLException 
    try 
      if (parentMapping != null) 
        handleRowValues(rsw, resultMap, null, RowBounds.DEFAULT, parentMapping);
       else 
        if (resultHandler == null) 
          DefaultResultHandler defaultResultHandler = new DefaultResultHandler(objectFactory);
          // 按照resultMap解析到defaultResultHandler中
          handleRowValues(rsw, resultMap, defaultResultHandler, rowBounds, null);
          // 最后的结果就是这里加进去的
          multipleResults.add(defaultResultHandler.getResultList());
         else 
          handleRowValues(rsw, resultMap, resultHandler, rowBounds, null);
        
      
     finally 
      // issue #228 (close resultsets)
      closeResultSet(rsw.getResultSet());
    
  

以上是关于Sharding-JDBC读写分离探秘的主要内容,如果未能解决你的问题,请参考以下文章

Sharding-JDBC 几行配置实现读写分离~

SpringBoot使用Sharding-JDBC读写分离

sharding-jdbc读写分离原理解读

sharding-jdbc读写分离原理解读

三Sharding-JDBC实现读写分离

MySQL 数据库MySQL 主从复制和 Sharding-JDBC 实现读写分离