PASCAL VOC数据集分析
Posted 武睿傲雪
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PASCAL VOC数据集分析相关的知识,希望对你有一定的参考价值。
PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。 本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。在这里采用PASCAL VOC2012作为例子。下载地址为:点击打开链接。(本文中的系统环境为ubuntu14.04) 下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:

其中在图像物体识别上着重需要了解的是Annotations、ImageSets和JPEGImages。
①JPEGImages JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。

②Annotations
Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。

- <annotation>
- <folder>VOC2012</folder>
- <filename>2007_000392.jpg</filename> //文件名
- <source> //图像来源(不重要)
- <database>The VOC2007 Database</database>
- <annotation>PASCAL VOC2007</annotation>
- <image>flickr</image>
- </source>
- <size> //图像尺寸(长宽以及通道数)
- <width>500</width>
- <height>332</height>
- <depth>3</depth>
- </size>
- <segmented>1</segmented> //是否用于分割(在图像物体识别中01无所谓)
- <object> //检测到的物体
- <name>horse</name> //物体类别
- <pose>Right</pose> //拍摄角度
- <truncated>0</truncated> //是否被截断(0表示完整)
- <difficult>0</difficult> //目标是否难以识别(0表示容易识别)
- <bndbox> //bounding-box(包含左下角和右上角xy坐标)
- <xmin>100</xmin>
- <ymin>96</ymin>
- <xmax>355</xmax>
- <ymax>324</ymax>
- </bndbox>
- </object>
- <object> //检测到多个物体
- <name>person</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>198</xmin>
- <ymin>58</ymin>
- <xmax>286</xmax>
- <ymax>197</ymax>
- </bndbox>
- </object>
- </annotation>

ImageSets存放的是每一种类型的challenge对应的图像数据。 在ImageSets下有四个文件夹:

在这里主要考察Main文件夹。


这两个文件夹下保存了物体分割后的图片,在物体识别中没有用到,在这里不做详细展开。
接下来需要研究的是如何自己生成训练数据和测试数据,将在下一篇中阐述。
以上是关于PASCAL VOC数据集分析的主要内容,如果未能解决你的问题,请参考以下文章