Java基础知识总结 ——HashMap源码
Posted 中二小苇
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java基础知识总结 ——HashMap源码相关的知识,希望对你有一定的参考价值。
一、HashMap的架构
HashMap底层主要是通过数组+链表+红黑树实现的,当链表的长度大于等于8的时候,链表会转化为红黑树,当红黑树的大小小于等于6时,红黑树会转化为链表。
二、常见属性
/*
* 类注释
* 1、不同于HashTable,允许key值和value为null,线程不安全。
* 2、loadFactor(影响因子)默认值是0.75,是均衡了时间和空间损耗算出来的值,较高的值会减少空间开销(扩容减少,数组大小增长速度变慢),但增加了查找成本(hash 冲突增加,链表长度变长),不扩容的条件:数组容量 > 需要的数组大小 /load factor。
* 3、如果有很多数据需要储存到 HashMap 中,建议 HashMap 的容量一开始就设置成足够的大小,这样可以防止在其过程中不断的扩容,影响性能。
* 4、HashMap 是非线程安全的,我们可以自己在外部加锁,或者通过 Collections#synchronizedMap 来实现线程安全,Collections#synchronizedMap 的实现是在每个方法上加上了 synchronized 锁。
* 5、在迭代过程中,如果 HashMap 的结构被修改,会快速失败。
*/
private static final long serialVersionUID = 362498820763181265L;
/*
* Implementation notes.
*
* This map usually acts as a binned (bucketed) hash table, but
* when bins get too large, they are transformed into bins of
* TreeNodes, each structured similarly to those in
* java.util.TreeMap. Most methods try to use normal bins, but
* relay to TreeNode methods when applicable (simply by checking
* instanceof a node). Bins of TreeNodes may be traversed and
* used like any others, but additionally support faster lookup
* when overpopulated. However, since the vast majority of bins in
* normal use are not overpopulated, checking for existence of
* tree bins may be delayed in the course of table methods.
*
* Tree bins (i.e., bins whose elements are all TreeNodes) are
* ordered primarily by hashCode, but in the case of ties, if two
* elements are of the same "class C implements Comparable<C>",
* type then their compareTo method is used for ordering. (We
* conservatively check generic types via reflection to validate
* this -- see method comparableClassFor). The added complexity
* of tree bins is worthwhile in providing worst-case O(log n)
* operations when keys either have distinct hashes or are
* orderable, Thus, performance degrades gracefully under
* accidental or malicious usages in which hashCode() methods
* return values that are poorly distributed, as well as those in
* which many keys share a hashCode, so long as they are also
* Comparable. (If neither of these apply, we may waste about a
* factor of two in time and space compared to taking no
* precautions. But the only known cases stem from poor user
* programming practices that are already so slow that this makes
* little difference.)
*
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*
* The root of a tree bin is normally its first node. However,
* sometimes (currently only upon Iterator.remove), the root might
* be elsewhere, but can be recovered following parent links
* (method TreeNode.root()).
*
* All applicable internal methods accept a hash code as an
* argument (as normally supplied from a public method), allowing
* them to call each other without recomputing user hashCodes.
* Most internal methods also accept a "tab" argument, that is
* normally the current table, but may be a new or old one when
* resizing or converting.
*
* When bin lists are treeified, split, or untreeified, we keep
* them in the same relative access/traversal order (i.e., field
* Node.next) to better preserve locality, and to slightly
* simplify handling of splits and traversals that invoke
* iterator.remove. When using comparators on insertion, to keep a
* total ordering (or as close as is required here) across
* rebalancings, we compare classes and identityHashCodes as
* tie-breakers.
*
* The use and transitions among plain vs tree modes is
* complicated by the existence of subclass LinkedHashMap. See
* below for hook methods defined to be invoked upon insertion,
* removal and access that allow LinkedHashMap internals to
* otherwise remain independent of these mechanics. (This also
* requires that a map instance be passed to some utility methods
* that may create new nodes.)
*
* The concurrent-programming-like SSA-based coding style helps
* avoid aliasing errors amid all of the twisty pointer operations.
*/
/**
* The default initial capacity - MUST be a power of two.
* 初始容量,默认16
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
* 最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
* 默认负载因子值
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 链表长度大于等于8时,链表转化为红黑树
* 为什么为8?
* 答:链表查询的时间复杂度是 O (n),红黑树的查询复杂度是 O (log (n))。在链表数据不多的时候,使用链表进行遍历也比较快,只有当链表数据比较多的时候,才会转化成红黑树,但红黑树需要的占用空间是链表的 2 倍,考虑到转化时间和空间损耗,所以我们需要定义出转化的边界值。
* 在考虑设计 8 这个值的时候,参考了泊松分布概率函数,由泊松分布中得出结论。当链表的长度是 8 的时候,出现的概率是 0.00000006,不到千万分之一,所以说正常情况下,链表的长度不可能到达 8 ,而一旦到达 8 时,肯定是 hash 算法出了问题,所以在这种情况下,为了让 HashMap 仍然有较高的查询性能,所以让链表转化成红黑树,我们正常写代码,使用 HashMap 时,几乎不会碰到链表转化成红黑树的情况,毕竟概念只有千万分之一。
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 红黑树大小小于等于6时,红黑树转化为链表
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 当数组容量大于 64 时,链表才会转化成红黑树
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/* ---------------- Fields -------------- */
/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
* 存放数据的数组
*/
transient Node<K,V>[] table;
/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* The number of key-value mappings contained in this map.
* HashMap 的实际大小
*/
transient int size;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
* 版本号
*/
transient int modCount;
/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
// 扩容的门槛,有两种情况
// 1、如果初始化时,给定数组大小的话,通过 tableSizeFor 方法计算,数组大小永远接近于 2 的幂次方,比如你给定初始化大小 19,实际上初始化大小为 32,为 2 的 5 次方。
// 2、如果是通过 resize 方法进行扩容,大小 = 数组容量 * 0.75
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;
//链表的节点
static class Node<K,V> implements Map.Entry<K,V>
//红黑树的节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V>
三、添加
/**
* Implements Map.put and related methods.
* 添加流程
* 1、空数组有无初始化,没有的话初始化
* 2、如果通过 key 的 hash 能够直接找到值,跳转到 6,否则到 3
* 3、如果 hash 冲突,两种解决方案:链表 or 红黑树
* 4、如果是链表,递归循环,把新元素追加到队尾
* 5、如果是红黑树,调用红黑树新增的方法
* 6、通过 2、4、5 将新元素追加成功,再根据 onlyIfAbsent 判断是否需要覆盖
* 7、判断是否需要扩容,需要扩容进行扩容,结束
* @param hash hash for key(key的哈希值)
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value(如果为true不改变已经存在的value值,默认是false)
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict)
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果数组为空,使用 resize 方法初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//(n - 1) & hash计算是将hash映射到0到n-1之间
//如果当前索引位置的值为空,直接生成新的节点在当前索引位置上
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 如果当前索引位置有值的处理方法,即我们常说的如何解决 hash 冲突
else
Node<K,V> e; K k;
//如果第一个点的key 的 hash 和值都相等,直接把当前下标位置的 Node 值赋值给临时变量
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果第一个点的key 的 hash 和值并不是都相等,再判断是红黑树还是链表,分别去判断并新增
//如果是红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果是链表
else
for (int binCount = 0; ; ++binCount)
if ((e = p.next) == null)
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
//这里使用的equals方法判断是否相同
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
if (e != null) // existing mapping for key
V oldValue = e.value;
//当 onlyIfAbsent 为 false 时,才会覆盖值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
//版本号+1
++modCount;
//如果 HashMap 的实际大小大于扩容的门槛,开始扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
四、红黑树新增节点
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v)
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;)
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
if (!searched)
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null)
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
五、查找
查找的代码的过程可以类比添加,主要有以下几个步骤
1、根据 hash 算法定位数组的索引位置,equals 判断当前节点是否是我们需要寻找的 key,是的话直接返回,不是的话往下。
2、判断当前节点有无 next 节点,有的话判断是链表类型,还是红黑树类型。
3、分别走链表和红黑树不同类型的查找方法。
其中红黑树的查找思路如下:
1、从根节点递归查找;
2、根据 hashcode,比较查找节点,左边节点,右边节点之间的大小,根本红黑树左小右大的特性进行判断;
3、判断查找节点在第 2 步有无定位节点位置,有的话返回,没有的话重复 2,3 两步;
4、一直自旋到定位到节点位置为止。
如果红黑树比较平衡的话,每次查找的次数就是树的深度。
以上是关于Java基础知识总结 ——HashMap源码的主要内容,如果未能解决你的问题,请参考以下文章