CaffeCaffe按自己的分类类别重训Mobilenet

Posted Taily老段

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CaffeCaffe按自己的分类类别重训Mobilenet相关的知识,希望对你有一定的参考价值。

 

Caffe按自己的分类类别重训Mobilenet;

/Users/taily/.anaconda/navigator/a.tool ; exit;
TailydeMacBook-Pro:~ taily$ /Users/taily/.anaconda/navigator/a.tool ; exit;
(py27) bash-3.2$ sh caffe_train.sh
I0113 12:42:26.073271 2341102464 upgrade_proto.cpp:1113] snapshot_prefix was a directory and is replaced to models/model_20190111/solver
I0113 12:42:26.073812 2341102464 caffe.cpp:197] Use CPU.
I0113 12:42:26.074146 2341102464 solver.cpp:45] Initializing solver from parameters: 
test_iter: 200
test_interval: 1000
base_lr: 0.001
display: 20
max_iter: 50000
lr_policy: "poly"
power: 1
momentum: 0.9
weight_decay: 5e-05
snapshot: 5000
snapshot_prefix: "models/solver"
solver_mode: CPU
net: "/Users/taily/mobilenet/mobilenet_train_val.prototxt"
train_state 
  level: 0
  stage: ""

average_loss: 20
weights: "/Users/taily/mobilenet/mobilenet.caffemodel"
I0113 12:42:26.074621 2341102464 solver.cpp:102] Creating training net from net file: /Users/taily/mobilenet/mobilenet_train_val.prototxt
I0113 12:42:26.075829 2341102464 upgrade_proto.cpp:79] Attempting to upgrade batch norm layers using deprecated params: /Users/taily/mobilenet/mobilenet_train_val.prototxt
I0113 12:42:26.075843 2341102464 upgrade_proto.cpp:82] Successfully upgraded batch norm layers using deprecated params.
I0113 12:42:26.076490 2341102464 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
I0113 12:42:26.076565 2341102464 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0113 12:42:26.076576 2341102464 net.cpp:53] Initializing net from parameters: 
name: "MOBILENET"
state 
  phase: TRAIN
  level: 0
  stage: ""

layer 
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include 
    phase: TRAIN
  
  transform_param 
    scale: 0.017
    mirror: true
    crop_size: 224
    mean_value: 103.94
    mean_value: 116.78
    mean_value: 123.68
  
  data_param 
    source: "/Users/taily/mobilenet/data/train/album_train_lmdb"
    batch_size: 64
    backend: LMDB
  

layer 
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv1/bn"
  type: "BatchNorm"
  bottom: "conv1"
  top: "conv1"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv1/scale"
  type: "Scale"
  bottom: "conv1"
  top: "conv1"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"

layer 
  name: "conv2_1/dw"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2_1/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 32
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv2_1/dw/bn"
  type: "BatchNorm"
  bottom: "conv2_1/dw"
  top: "conv2_1/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv2_1/dw/scale"
  type: "Scale"
  bottom: "conv2_1/dw"
  top: "conv2_1/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu2_1/dw"
  type: "ReLU"
  bottom: "conv2_1/dw"
  top: "conv2_1/dw"

layer 
  name: "conv2_1/sep"
  type: "Convolution"
  bottom: "conv2_1/dw"
  top: "conv2_1/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 64
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv2_1/sep/bn"
  type: "BatchNorm"
  bottom: "conv2_1/sep"
  top: "conv2_1/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv2_1/sep/scale"
  type: "Scale"
  bottom: "conv2_1/sep"
  top: "conv2_1/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu2_1/sep"
  type: "ReLU"
  bottom: "conv2_1/sep"
  top: "conv2_1/sep"

layer 
  name: "conv2_2/dw"
  type: "Convolution"
  bottom: "conv2_1/sep"
  top: "conv2_2/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 64
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 64
    stride: 2
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv2_2/dw/bn"
  type: "BatchNorm"
  bottom: "conv2_2/dw"
  top: "conv2_2/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv2_2/dw/scale"
  type: "Scale"
  bottom: "conv2_2/dw"
  top: "conv2_2/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu2_2/dw"
  type: "ReLU"
  bottom: "conv2_2/dw"
  top: "conv2_2/dw"

layer 
  name: "conv2_2/sep"
  type: "Convolution"
  bottom: "conv2_2/dw"
  top: "conv2_2/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 128
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv2_2/sep/bn"
  type: "BatchNorm"
  bottom: "conv2_2/sep"
  top: "conv2_2/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv2_2/sep/scale"
  type: "Scale"
  bottom: "conv2_2/sep"
  top: "conv2_2/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu2_2/sep"
  type: "ReLU"
  bottom: "conv2_2/sep"
  top: "conv2_2/sep"

layer 
  name: "conv3_1/dw"
  type: "Convolution"
  bottom: "conv2_2/sep"
  top: "conv3_1/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 128
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv3_1/dw/bn"
  type: "BatchNorm"
  bottom: "conv3_1/dw"
  top: "conv3_1/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv3_1/dw/scale"
  type: "Scale"
  bottom: "conv3_1/dw"
  top: "conv3_1/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu3_1/dw"
  type: "ReLU"
  bottom: "conv3_1/dw"
  top: "conv3_1/dw"

layer 
  name: "conv3_1/sep"
  type: "Convolution"
  bottom: "conv3_1/dw"
  top: "conv3_1/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 128
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv3_1/sep/bn"
  type: "BatchNorm"
  bottom: "conv3_1/sep"
  top: "conv3_1/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv3_1/sep/scale"
  type: "Scale"
  bottom: "conv3_1/sep"
  top: "conv3_1/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu3_1/sep"
  type: "ReLU"
  bottom: "conv3_1/sep"
  top: "conv3_1/sep"

layer 
  name: "conv3_2/dw"
  type: "Convolution"
  bottom: "conv3_1/sep"
  top: "conv3_2/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 128
    stride: 2
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv3_2/dw/bn"
  type: "BatchNorm"
  bottom: "conv3_2/dw"
  top: "conv3_2/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv3_2/dw/scale"
  type: "Scale"
  bottom: "conv3_2/dw"
  top: "conv3_2/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu3_2/dw"
  type: "ReLU"
  bottom: "conv3_2/dw"
  top: "conv3_2/dw"

layer 
  name: "conv3_2/sep"
  type: "Convolution"
  bottom: "conv3_2/dw"
  top: "conv3_2/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 256
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv3_2/sep/bn"
  type: "BatchNorm"
  bottom: "conv3_2/sep"
  top: "conv3_2/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv3_2/sep/scale"
  type: "Scale"
  bottom: "conv3_2/sep"
  top: "conv3_2/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu3_2/sep"
  type: "ReLU"
  bottom: "conv3_2/sep"
  top: "conv3_2/sep"

layer 
  name: "conv4_1/dw"
  type: "Convolution"
  bottom: "conv3_2/sep"
  top: "conv4_1/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 256
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv4_1/dw/bn"
  type: "BatchNorm"
  bottom: "conv4_1/dw"
  top: "conv4_1/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv4_1/dw/scale"
  type: "Scale"
  bottom: "conv4_1/dw"
  top: "conv4_1/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu4_1/dw"
  type: "ReLU"
  bottom: "conv4_1/dw"
  top: "conv4_1/dw"

layer 
  name: "conv4_1/sep"
  type: "Convolution"
  bottom: "conv4_1/dw"
  top: "conv4_1/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 256
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv4_1/sep/bn"
  type: "BatchNorm"
  bottom: "conv4_1/sep"
  top: "conv4_1/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv4_1/sep/scale"
  type: "Scale"
  bottom: "conv4_1/sep"
  top: "conv4_1/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu4_1/sep"
  type: "ReLU"
  bottom: "conv4_1/sep"
  top: "conv4_1/sep"

layer 
  name: "conv4_2/dw"
  type: "Convolution"
  bottom: "conv4_1/sep"
  top: "conv4_2/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 256
    stride: 2
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv4_2/dw/bn"
  type: "BatchNorm"
  bottom: "conv4_2/dw"
  top: "conv4_2/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv4_2/dw/scale"
  type: "Scale"
  bottom: "conv4_2/dw"
  top: "conv4_2/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu4_2/dw"
  type: "ReLU"
  bottom: "conv4_2/dw"
  top: "conv4_2/dw"

layer 
  name: "conv4_2/sep"
  type: "Convolution"
  bottom: "conv4_2/dw"
  top: "conv4_2/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv4_2/sep/bn"
  type: "BatchNorm"
  bottom: "conv4_2/sep"
  top: "conv4_2/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv4_2/sep/scale"
  type: "Scale"
  bottom: "conv4_2/sep"
  top: "conv4_2/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu4_2/sep"
  type: "ReLU"
  bottom: "conv4_2/sep"
  top: "conv4_2/sep"

layer 
  name: "conv5_1/dw"
  type: "Convolution"
  bottom: "conv4_2/sep"
  top: "conv5_1/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_1/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_1/dw"
  top: "conv5_1/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_1/dw/scale"
  type: "Scale"
  bottom: "conv5_1/dw"
  top: "conv5_1/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_1/dw"
  type: "ReLU"
  bottom: "conv5_1/dw"
  top: "conv5_1/dw"

layer 
  name: "conv5_1/sep"
  type: "Convolution"
  bottom: "conv5_1/dw"
  top: "conv5_1/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_1/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_1/sep"
  top: "conv5_1/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_1/sep/scale"
  type: "Scale"
  bottom: "conv5_1/sep"
  top: "conv5_1/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_1/sep"
  type: "ReLU"
  bottom: "conv5_1/sep"
  top: "conv5_1/sep"

layer 
  name: "conv5_2/dw"
  type: "Convolution"
  bottom: "conv5_1/sep"
  top: "conv5_2/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_2/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_2/dw"
  top: "conv5_2/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_2/dw/scale"
  type: "Scale"
  bottom: "conv5_2/dw"
  top: "conv5_2/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_2/dw"
  type: "ReLU"
  bottom: "conv5_2/dw"
  top: "conv5_2/dw"

layer 
  name: "conv5_2/sep"
  type: "Convolution"
  bottom: "conv5_2/dw"
  top: "conv5_2/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_2/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_2/sep"
  top: "conv5_2/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_2/sep/scale"
  type: "Scale"
  bottom: "conv5_2/sep"
  top: "conv5_2/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_2/sep"
  type: "ReLU"
  bottom: "conv5_2/sep"
  top: "conv5_2/sep"

layer 
  name: "conv5_3/dw"
  type: "Convolution"
  bottom: "conv5_2/sep"
  top: "conv5_3/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_3/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_3/dw"
  top: "conv5_3/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_3/dw/scale"
  type: "Scale"
  bottom: "conv5_3/dw"
  top: "conv5_3/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_3/dw"
  type: "ReLU"
  bottom: "conv5_3/dw"
  top: "conv5_3/dw"

layer 
  name: "conv5_3/sep"
  type: "Convolution"
  bottom: "conv5_3/dw"
  top: "conv5_3/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_3/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_3/sep"
  top: "conv5_3/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_3/sep/scale"
  type: "Scale"
  bottom: "conv5_3/sep"
  top: "conv5_3/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_3/sep"
  type: "ReLU"
  bottom: "conv5_3/sep"
  top: "conv5_3/sep"

layer 
  name: "conv5_4/dw"
  type: "Convolution"
  bottom: "conv5_3/sep"
  top: "conv5_4/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_4/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_4/dw"
  top: "conv5_4/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_4/dw/scale"
  type: "Scale"
  bottom: "conv5_4/dw"
  top: "conv5_4/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_4/dw"
  type: "ReLU"
  bottom: "conv5_4/dw"
  top: "conv5_4/dw"

layer 
  name: "conv5_4/sep"
  type: "Convolution"
  bottom: "conv5_4/dw"
  top: "conv5_4/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_4/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_4/sep"
  top: "conv5_4/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_4/sep/scale"
  type: "Scale"
  bottom: "conv5_4/sep"
  top: "conv5_4/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_4/sep"
  type: "ReLU"
  bottom: "conv5_4/sep"
  top: "conv5_4/sep"

layer 
  name: "conv5_5/dw"
  type: "Convolution"
  bottom: "conv5_4/sep"
  top: "conv5_5/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_5/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_5/dw"
  top: "conv5_5/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_5/dw/scale"
  type: "Scale"
  bottom: "conv5_5/dw"
  top: "conv5_5/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_5/dw"
  type: "ReLU"
  bottom: "conv5_5/dw"
  top: "conv5_5/dw"

layer 
  name: "conv5_5/sep"
  type: "Convolution"
  bottom: "conv5_5/dw"
  top: "conv5_5/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_5/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_5/sep"
  top: "conv5_5/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_5/sep/scale"
  type: "Scale"
  bottom: "conv5_5/sep"
  top: "conv5_5/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_5/sep"
  type: "ReLU"
  bottom: "conv5_5/sep"
  top: "conv5_5/sep"

layer 
  name: "conv5_6/dw"
  type: "Convolution"
  bottom: "conv5_5/sep"
  top: "conv5_6/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 512
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 512
    stride: 2
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv5_6/dw/bn"
  type: "BatchNorm"
  bottom: "conv5_6/dw"
  top: "conv5_6/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_6/dw/scale"
  type: "Scale"
  bottom: "conv5_6/dw"
  top: "conv5_6/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_6/dw"
  type: "ReLU"
  bottom: "conv5_6/dw"
  top: "conv5_6/dw"

layer 
  name: "conv5_6/sep"
  type: "Convolution"
  bottom: "conv5_6/dw"
  top: "conv5_6/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 1024
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv5_6/sep/bn"
  type: "BatchNorm"
  bottom: "conv5_6/sep"
  top: "conv5_6/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv5_6/sep/scale"
  type: "Scale"
  bottom: "conv5_6/sep"
  top: "conv5_6/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu5_6/sep"
  type: "ReLU"
  bottom: "conv5_6/sep"
  top: "conv5_6/sep"

layer 
  name: "conv6/dw"
  type: "Convolution"
  bottom: "conv5_6/sep"
  top: "conv6/dw"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 1024
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 1024
    stride: 1
    weight_filler 
      type: "msra"
    
    engine: CAFFE
  

layer 
  name: "conv6/dw/bn"
  type: "BatchNorm"
  bottom: "conv6/dw"
  top: "conv6/dw"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv6/dw/scale"
  type: "Scale"
  bottom: "conv6/dw"
  top: "conv6/dw"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu6/dw"
  type: "ReLU"
  bottom: "conv6/dw"
  top: "conv6/dw"

layer 
  name: "conv6/sep"
  type: "Convolution"
  bottom: "conv6/dw"
  top: "conv6/sep"
  param 
    lr_mult: 1
    decay_mult: 1
  
  convolution_param 
    num_output: 1024
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler 
      type: "msra"
    
  

layer 
  name: "conv6/sep/bn"
  type: "BatchNorm"
  bottom: "conv6/sep"
  top: "conv6/sep"
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  
  param 
    lr_mult: 0
    decay_mult: 0
  

layer 
  name: "conv6/sep/scale"
  type: "Scale"
  bottom: "conv6/sep"
  top: "conv6/sep"
  scale_param 
    filler 
      value: 1
    
    bias_term: true
    bias_filler 
      value: 0
    
  

layer 
  name: "relu6/sep"
  type: "ReLU"
  bottom: "conv6/sep"
  top: "conv6/sep"

layer 
  name: "pool6"
  type: "Pooling"
  bottom: "conv6/sep"
  top: "pool6"
  pooling_param 
    pool: AVE
    global_pooling: true
  

layer 
  name: "fc7_album"
  type: "Convolution"
  bottom: "pool6"
  top: "fc7_album"
  param 
    lr_mult: 10
    decay_mult: 1
  
  param 
    lr_mult: 20
    decay_mult: 0
  
  convolution_param 
    num_output: 4
    kernel_size: 1
    weight_filler 
      type: "msra"
    
    bias_filler 
      type: "constant"
      value: 0
    
  

layer 
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc7_album"
  bottom: "label"
  top: "loss"

I0113 12:42:26.078482 2341102464 layer_factory.hpp:77] Creating layer data
I0113 12:42:26.079898 2341102464 db_lmdb.cpp:35] Opened lmdb /Users/taily/mobilenet/data/train/album_train_lmdb
I0113 12:42:26.080801 2341102464 net.cpp:86] Creating Layer data
I0113 12:42:26.080816 2341102464 net.cpp:382] data -> data
I0113 12:42:26.080843 2341102464 net.cpp:382] data -> label
I0113 12:42:26.087230 2341102464 data_layer.cpp:45] output data size: 64,3,224,224
I0113 12:42:26.168040 2341102464 net.cpp:124] Setting up data
I0113 12:42:26.168068 2341102464 net.cpp:131] Top shape: 64 3 224 224 (9633792)
I0113 12:42:26.168077 2341102464 net.cpp:131] Top shape: 64 (64)
I0113 12:42:26.168082 2341102464 net.cpp:139] Memory required for data: 38535424
I0113 12:42:26.168092 2341102464 layer_factory.hpp:77] Creating layer conv1
I0113 12:42:26.168105 2341102464 net.cpp:86] Creating Layer conv1
I0113 12:42:26.168112 2341102464 net.cpp:408] conv1 <- data
I0113 12:42:26.168118 2341102464 net.cpp:382] conv1 -> conv1
I0113 12:42:26.168179 2341102464 net.cpp:124] Setting up conv1
I0113 12:42:26.168185 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168192 2341102464 net.cpp:139] Memory required for data: 141295872
I0113 12:42:26.168202 2341102464 layer_factory.hpp:77] Creating layer conv1/bn
I0113 12:42:26.168210 2341102464 net.cpp:86] Creating Layer conv1/bn
I0113 12:42:26.168215 2341102464 net.cpp:408] conv1/bn <- conv1
I0113 12:42:26.168221 2341102464 net.cpp:369] conv1/bn -> conv1 (in-place)
I0113 12:42:26.168246 2341102464 net.cpp:124] Setting up conv1/bn
I0113 12:42:26.168251 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168257 2341102464 net.cpp:139] Memory required for data: 244056320
I0113 12:42:26.168265 2341102464 layer_factory.hpp:77] Creating layer conv1/scale
I0113 12:42:26.168278 2341102464 net.cpp:86] Creating Layer conv1/scale
I0113 12:42:26.168283 2341102464 net.cpp:408] conv1/scale <- conv1
I0113 12:42:26.168289 2341102464 net.cpp:369] conv1/scale -> conv1 (in-place)
I0113 12:42:26.168305 2341102464 layer_factory.hpp:77] Creating layer conv1/scale
I0113 12:42:26.168365 2341102464 net.cpp:124] Setting up conv1/scale
I0113 12:42:26.168371 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168377 2341102464 net.cpp:139] Memory required for data: 346816768
I0113 12:42:26.168387 2341102464 layer_factory.hpp:77] Creating layer relu1
I0113 12:42:26.168401 2341102464 net.cpp:86] Creating Layer relu1
I0113 12:42:26.168409 2341102464 net.cpp:408] relu1 <- conv1
I0113 12:42:26.168416 2341102464 net.cpp:369] relu1 -> conv1 (in-place)
I0113 12:42:26.168422 2341102464 net.cpp:124] Setting up relu1
I0113 12:42:26.168426 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168432 2341102464 net.cpp:139] Memory required for data: 449577216
I0113 12:42:26.168437 2341102464 layer_factory.hpp:77] Creating layer conv2_1/dw
I0113 12:42:26.168444 2341102464 net.cpp:86] Creating Layer conv2_1/dw
I0113 12:42:26.168449 2341102464 net.cpp:408] conv2_1/dw <- conv1
I0113 12:42:26.168455 2341102464 net.cpp:382] conv2_1/dw -> conv2_1/dw
I0113 12:42:26.168469 2341102464 net.cpp:124] Setting up conv2_1/dw
I0113 12:42:26.168475 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168485 2341102464 net.cpp:139] Memory required for data: 552337664
I0113 12:42:26.168491 2341102464 layer_factory.hpp:77] Creating layer conv2_1/dw/bn
I0113 12:42:26.168498 2341102464 net.cpp:86] Creating Layer conv2_1/dw/bn
I0113 12:42:26.168503 2341102464 net.cpp:408] conv2_1/dw/bn <- conv2_1/dw
I0113 12:42:26.168507 2341102464 net.cpp:369] conv2_1/dw/bn -> conv2_1/dw (in-place)
I0113 12:42:26.168567 2341102464 net.cpp:124] Setting up conv2_1/dw/bn
I0113 12:42:26.168573 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168579 2341102464 net.cpp:139] Memory required for data: 655098112
I0113 12:42:26.168587 2341102464 layer_factory.hpp:77] Creating layer conv2_1/dw/scale
I0113 12:42:26.168593 2341102464 net.cpp:86] Creating Layer conv2_1/dw/scale
I0113 12:42:26.168598 2341102464 net.cpp:408] conv2_1/dw/scale <- conv2_1/dw
I0113 12:42:26.168603 2341102464 net.cpp:369] conv2_1/dw/scale -> conv2_1/dw (in-place)
I0113 12:42:26.168612 2341102464 layer_factory.hpp:77] Creating layer conv2_1/dw/scale
I0113 12:42:26.168655 2341102464 net.cpp:124] Setting up conv2_1/dw/scale
I0113 12:42:26.168663 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168673 2341102464 net.cpp:139] Memory required for data: 757858560
I0113 12:42:26.168681 2341102464 layer_factory.hpp:77] Creating layer relu2_1/dw
I0113 12:42:26.168687 2341102464 net.cpp:86] Creating Layer relu2_1/dw
I0113 12:42:26.168692 2341102464 net.cpp:408] relu2_1/dw <- conv2_1/dw
I0113 12:42:26.168697 2341102464 net.cpp:369] relu2_1/dw -> conv2_1/dw (in-place)
I0113 12:42:26.168704 2341102464 net.cpp:124] Setting up relu2_1/dw
I0113 12:42:26.168707 2341102464 net.cpp:131] Top shape: 64 32 112 112 (25690112)
I0113 12:42:26.168714 2341102464 net.cpp:139] Memory required for data: 860619008
I0113 12:42:26.168718 2341102464 layer_factory.hpp:77] Creating layer conv2_1/sep
I0113 12:42:26.168725 2341102464 net.cpp:86] Creating Layer conv2_1/sep
I0113 12:42:26.168730 2341102464 net.cpp:408] conv2_1/sep <- conv2_1/dw
I0113 12:42:26.168735 2341102464 net.cpp:382] conv2_1/sep -> conv2_1/sep
I0113 12:42:26.168766 2341102464 net.cpp:124] Setting up conv2_1/sep
I0113 12:42:26.168771 2341102464 net.cpp:131] Top shape: 64 64 112 112 (51380224)
I0113 12:42:26.168776 2341102464 net.cpp:139] Memory required for data: 1066139904
I0113 12:42:26.168782 2341102464 layer_factory.hpp:77] Creating layer conv2_1/sep/bn
I0113 12:42:26.168787 2341102464 net.cpp:86] Creating Layer conv2_1/sep/bn
I0113 12:42:26.168792 2341102464 net.cpp:408] conv2_1/sep/bn <- conv2_1/sep
I0113 12:42:26.168798 2341102464 net.cpp:369] conv2_1/sep/bn -> conv2_1/sep (in-place)
I0113 12:42:26.168812 2341102464 net.cpp:124] Setting up conv2_1/sep/bn
I0113 12:42:26.168817 2341102464 net.cpp:131] Top shape: 64 64 112 112 (51380224)
I0113 12:42:26.168823 2341102464 net.cpp:139] Memory required for data: 1271660800
I0113 12:42:26.168829 2341102464 layer_factory.hpp:77] Creating layer conv2_1/sep/scale
I0113 12:42:26.168845 2341102464 net.cpp:86] Creating Layer conv2_1/sep/scale
I0113 12:42:26.168850 2341102464 net.cpp:408] conv2_1/sep/scale <- conv2_1/sep
I0113 12:42:26.168856 2341102464 net.cpp:369] conv2_1/sep/scale -> conv2_1/sep (in-place)
I0113 12:42:26.168864 2341102464 layer_factory.hpp:77] Creating layer conv2_1/sep/scale
I0113 12:42:26.168905 2341102464 net.cpp:124] Setting up conv2_1/sep/scale
I0113 12:42:26.168910 2341102464 net.cpp:131] Top shape: 64 64 112 112 (51380224)
I0113 12:42:26.168915 2341102464 net.cpp:139] Memory required for data: 1477181696
I0113 12:42:26.168923 2341102464 layer_factory.hpp:77] Creating layer relu2_1/sep
I0113 12:42:26.168931 2341102464 net.cpp:86] Creating Layer relu2_1/sep
I0113 12:42:26.168936 2341102464 net.cpp:408] relu2_1/sep <- conv2_1/sep
I0113 12:42:26.168941 2341102464 net.cpp:369] relu2_1/sep -> conv2_1/sep (in-place)
I0113 12:42:26.168946 2341102464 net.cpp:124] Setting up relu2_1/sep
I0113 12:42:26.168951 2341102464 net.cpp:131] Top shape: 64 64 112 112 (51380224)
I0113 12:42:26.168956 2341102464 net.cpp:139] Memory required for data: 1682702592
I0113 12:42:26.169009 2341102464 layer_factory.hpp:77] Creating layer conv2_2/dw
I0113 12:42:26.169023 2341102464 net.cpp:86] Creating Layer conv2_2/dw
I0113 12:42:26.169029 2341102464 net.cpp:408] conv2_2/dw <- conv2_1/sep
I0113 12:42:26.169037 2341102464 net.cpp:382] conv2_2/dw -> conv2_2/dw
I0113 12:42:26.169085 2341102464 net.cpp:124] Setting up conv2_2/dw
I0113 12:42:26.169091 2341102464 net.cpp:131] Top shape: 64 64 56 56 (12845056)
I0113 12:42:26.169098 2341102464 net.cpp:139] Memory required for data: 1734082816
I0113 12:42:26.169104 2341102464 layer_factory.hpp:77] Creating layer conv2_2/dw/bn
I0113 12:42:26.169111 2341102464 net.cpp:86] Creating Layer conv2_2/dw/bn
I0113 12:42:26.169116 2341102464 net.cpp:408] conv2_2/dw/bn <- conv2_2/dw
I0113 12:42:26.169121 2341102464 net.cpp:369] conv2_2/dw/bn -> conv2_2/dw (in-place)
I0113 12:42:26.169132 2341102464 net.cpp:124] Setting up conv2_2/dw/bn
I0113 12:42:26.169137 2341102464 net.cpp:131] Top shape: 64 64 56 56 (12845056)
I0113 12:42:26.169143 2341102464 net.cpp:139] Memory required for data: 1785463040
I0113 12:42:26.169150 2341102464 layer_factory.hpp:77] Creating layer conv2_2/dw/scale
I0113 12:42:26.169157 2341102464 net.cpp:86] Creating Layer conv2_2/dw/scale
I0113 12:42:26.169162 2341102464 net.cpp:408] conv2_2/dw/scale <- conv2_2/dw
I0113 12:42:26.169168 2341102464 net.cpp:369] conv2_2/dw/scale -> conv2_2/dw (in-place)
I0113 12:42:26.169176 2341102464 layer_factory.hpp:77] Creating layer conv2_2/dw/scale
I0113 12:42:26.169189 2341102464 net.cpp:124] Setting up conv2_2/dw/scale
I0113 12:42:26.169194 2341102464 net.cpp:131] Top shape: 64 64 56 56 (12845056)
I0113 12:42:26.169200 2341102464 net.cpp:139] Memory required for data: 1836843264
I0113 12:42:26.169205 2341102464 layer_factory.hpp:77] Creating layer relu2_2/dw
I0113 12:42:26.169217 2341102464 net.cpp:86] Creating Layer relu2_2/dw
I0113 12:42:26.169222 2341102464 net.cpp:408] relu2_2/dw <- conv2_2/dw
I0113 12:42:26.169227 2341102464 net.cpp:369] relu2_2/dw -> conv2_2/dw (in-place)
I0113 12:42:26.169234 2341102464 net.cpp:124] Setting up relu2_2/dw
I0113 12:42:26.169237 2341102464 net.cpp:131] Top shape: 64 64 56 56 (12845056)
I0113 12:42:26.169243 2341102464 net.cpp:139] Memory required for data: 1888223488
I0113 12:42:26.169247 2341102464 layer_factory.hpp:77] Creating layer conv2_2/sep
I0113 12:42:26.169284 2341102464 net.cpp:86] Creating Layer conv2_2/sep
I0113 12:42:26.169296 2341102464 net.cpp:408] conv2_2/sep <- conv2_2/dw
I0113 12:42:26.169302 2341102464 net.cpp:382] conv2_2/sep -> conv2_2/sep
I0113 12:42:26.169399 2341102464 net.cpp:124] Setting up conv2_2/sep
I0113 12:42:26.169404 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169411 2341102464 net.cpp:139] Memory required for data: 1990983936
I0113 12:42:26.169417 2341102464 layer_factory.hpp:77] Creating layer conv2_2/sep/bn
I0113 12:42:26.169425 2341102464 net.cpp:86] Creating Layer conv2_2/sep/bn
I0113 12:42:26.169430 2341102464 net.cpp:408] conv2_2/sep/bn <- conv2_2/sep
I0113 12:42:26.169436 2341102464 net.cpp:369] conv2_2/sep/bn -> conv2_2/sep (in-place)
I0113 12:42:26.169467 2341102464 net.cpp:124] Setting up conv2_2/sep/bn
I0113 12:42:26.169473 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169479 2341102464 net.cpp:139] Memory required for data: 2093744384
I0113 12:42:26.169486 2341102464 layer_factory.hpp:77] Creating layer conv2_2/sep/scale
I0113 12:42:26.169493 2341102464 net.cpp:86] Creating Layer conv2_2/sep/scale
I0113 12:42:26.169498 2341102464 net.cpp:408] conv2_2/sep/scale <- conv2_2/sep
I0113 12:42:26.169504 2341102464 net.cpp:369] conv2_2/sep/scale -> conv2_2/sep (in-place)
I0113 12:42:26.169513 2341102464 layer_factory.hpp:77] Creating layer conv2_2/sep/scale
I0113 12:42:26.169536 2341102464 net.cpp:124] Setting up conv2_2/sep/scale
I0113 12:42:26.169541 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169548 2341102464 net.cpp:139] Memory required for data: 2196504832
I0113 12:42:26.169554 2341102464 layer_factory.hpp:77] Creating layer relu2_2/sep
I0113 12:42:26.169564 2341102464 net.cpp:86] Creating Layer relu2_2/sep
I0113 12:42:26.169569 2341102464 net.cpp:408] relu2_2/sep <- conv2_2/sep
I0113 12:42:26.169574 2341102464 net.cpp:369] relu2_2/sep -> conv2_2/sep (in-place)
I0113 12:42:26.169579 2341102464 net.cpp:124] Setting up relu2_2/sep
I0113 12:42:26.169584 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169590 2341102464 net.cpp:139] Memory required for data: 2299265280
I0113 12:42:26.169595 2341102464 layer_factory.hpp:77] Creating layer conv3_1/dw
I0113 12:42:26.169602 2341102464 net.cpp:86] Creating Layer conv3_1/dw
I0113 12:42:26.169607 2341102464 net.cpp:408] conv3_1/dw <- conv2_2/sep
I0113 12:42:26.169613 2341102464 net.cpp:382] conv3_1/dw -> conv3_1/dw
I0113 12:42:26.169634 2341102464 net.cpp:124] Setting up conv3_1/dw
I0113 12:42:26.169641 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169646 2341102464 net.cpp:139] Memory required for data: 2402025728
I0113 12:42:26.169651 2341102464 layer_factory.hpp:77] Creating layer conv3_1/dw/bn
I0113 12:42:26.169657 2341102464 net.cpp:86] Creating Layer conv3_1/dw/bn
I0113 12:42:26.169662 2341102464 net.cpp:408] conv3_1/dw/bn <- conv3_1/dw
I0113 12:42:26.169668 2341102464 net.cpp:369] conv3_1/dw/bn -> conv3_1/dw (in-place)
I0113 12:42:26.169688 2341102464 net.cpp:124] Setting up conv3_1/dw/bn
I0113 12:42:26.169693 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169699 2341102464 net.cpp:139] Memory required for data: 2504786176
I0113 12:42:26.169708 2341102464 layer_factory.hpp:77] Creating layer conv3_1/dw/scale
I0113 12:42:26.169714 2341102464 net.cpp:86] Creating Layer conv3_1/dw/scale
I0113 12:42:26.169718 2341102464 net.cpp:408] conv3_1/dw/scale <- conv3_1/dw
I0113 12:42:26.169724 2341102464 net.cpp:369] conv3_1/dw/scale -> conv3_1/dw (in-place)
I0113 12:42:26.169733 2341102464 layer_factory.hpp:77] Creating layer conv3_1/dw/scale
I0113 12:42:26.169752 2341102464 net.cpp:124] Setting up conv3_1/dw/scale
I0113 12:42:26.169776 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169790 2341102464 net.cpp:139] Memory required for data: 2607546624
I0113 12:42:26.169796 2341102464 layer_factory.hpp:77] Creating layer relu3_1/dw
I0113 12:42:26.169803 2341102464 net.cpp:86] Creating Layer relu3_1/dw
I0113 12:42:26.169809 2341102464 net.cpp:408] relu3_1/dw <- conv3_1/dw
I0113 12:42:26.169816 2341102464 net.cpp:369] relu3_1/dw -> conv3_1/dw (in-place)
I0113 12:42:26.169822 2341102464 net.cpp:124] Setting up relu3_1/dw
I0113 12:42:26.169827 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.169832 2341102464 net.cpp:139] Memory required for data: 2710307072
I0113 12:42:26.169837 2341102464 layer_factory.hpp:77] Creating layer conv3_1/sep
I0113 12:42:26.169844 2341102464 net.cpp:86] Creating Layer conv3_1/sep
I0113 12:42:26.169849 2341102464 net.cpp:408] conv3_1/sep <- conv3_1/dw
I0113 12:42:26.169855 2341102464 net.cpp:382] conv3_1/sep -> conv3_1/sep
I0113 12:42:26.170064 2341102464 net.cpp:124] Setting up conv3_1/sep
I0113 12:42:26.170099 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.170109 2341102464 net.cpp:139] Memory required for data: 2813067520
I0113 12:42:26.170115 2341102464 layer_factory.hpp:77] Creating layer conv3_1/sep/bn
I0113 12:42:26.170121 2341102464 net.cpp:86] Creating Layer conv3_1/sep/bn
I0113 12:42:26.170126 2341102464 net.cpp:408] conv3_1/sep/bn <- conv3_1/sep
I0113 12:42:26.170132 2341102464 net.cpp:369] conv3_1/sep/bn -> conv3_1/sep (in-place)
I0113 12:42:26.170157 2341102464 net.cpp:124] Setting up conv3_1/sep/bn
I0113 12:42:26.170163 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.170169 2341102464 net.cpp:139] Memory required for data: 2915827968
I0113 12:42:26.170176 2341102464 layer_factory.hpp:77] Creating layer conv3_1/sep/scale
I0113 12:42:26.170182 2341102464 net.cpp:86] Creating Layer conv3_1/sep/scale
I0113 12:42:26.170187 2341102464 net.cpp:408] conv3_1/sep/scale <- conv3_1/sep
I0113 12:42:26.170197 2341102464 net.cpp:369] conv3_1/sep/scale -> conv3_1/sep (in-place)
I0113 12:42:26.170208 2341102464 layer_factory.hpp:77] Creating layer conv3_1/sep/scale
I0113 12:42:26.170230 2341102464 net.cpp:124] Setting up conv3_1/sep/scale
I0113 12:42:26.170235 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.170241 2341102464 net.cpp:139] Memory required for data: 3018588416
I0113 12:42:26.170248 2341102464 layer_factory.hpp:77] Creating layer relu3_1/sep
I0113 12:42:26.170253 2341102464 net.cpp:86] Creating Layer relu3_1/sep
I0113 12:42:26.170258 2341102464 net.cpp:408] relu3_1/sep <- conv3_1/sep
I0113 12:42:26.170264 2341102464 net.cpp:369] relu3_1/sep -> conv3_1/sep (in-place)
I0113 12:42:26.170269 2341102464 net.cpp:124] Setting up relu3_1/sep
I0113 12:42:26.170274 2341102464 net.cpp:131] Top shape: 64 128 56 56 (25690112)
I0113 12:42:26.170279 2341102464 net.cpp:139] Memory required for data: 3121348864
I0113 12:42:26.170284 2341102464 layer_factory.hpp:77] Creating layer conv3_2/dw
I0113 12:42:26.170342 2341102464 net.cpp:86] Creating Layer conv3_2/dw
I0113 12:42:26.170353 2341102464 net.cpp:408] conv3_2/dw <- conv3_1/sep
I0113 12:42:26.170361 2341102464 net.cpp:382] conv3_2/dw -> conv3_2/dw
I0113 12:42:26.170387 2341102464 net.cpp:124] Setting up conv3_2/dw
I0113 12:42:26.170392 2341102464 net.cpp:131] Top shape: 64 128 28 28 (6422528)
I0113 12:42:26.170398 2341102464 net.cpp:139] Memory required for data: 3147038976
I0113 12:42:26.170403 2341102464 layer_factory.hpp:77] Creating layer conv3_2/dw/bn
I0113 12:42:26.170410 2341102464 net.cpp:86] Creating Layer conv3_2/dw/bn
I0113 12:42:26.170414 2341102464 net.cpp:408] conv3_2/dw/bn <- conv3_2/dw
I0113 12:42:26.170420 2341102464 net.cpp:369] conv3_2/dw/bn -> conv3_2/dw (in-place)
I0113 12:42:26.170445 2341102464 net.cpp:124] Setting up conv3_2/dw/bn
I0113 12:42:26.170451 2341102464 net.cpp:131] Top shape: 64 128 28 28 (6422528)
I0113 12:42:26.170457 2341102464 net.cpp:139] Memory required for data: 3172729088
I0113 12:42:26.170464 2341102464 layer_factory.hpp:77] Creating layer conv3_2/dw/scale
I0113 12:42:26.170469 2341102464 net.cpp:86] Creating Layer conv3_2/dw/scale
I0113 12:42:26.170475 2341102464 net.cpp:408] conv3_2/dw/scale <- conv3_2/dw
I0113 12:42:26.170485 2341102464 net.cpp:369] conv3_2/dw/scale -> conv3_2/dw (in-place)
I0113 12:42:26.170495 2341102464 layer_factory.hpp:77] Creating layer conv3_2/dw/scale
I0113 12:42:26.170509 2341102464 net.cpp:124] Setting up conv3_2/dw/scale
I0113 12:42:26.170514 2341102464 net.cpp:131] Top shape: 64 128 28 28 (6422528)
I0113 12:42:26.170521 2341102464 net.cpp:139] Memory required for data: 3198419200
I0113 12:42:26.170526 2341102464 layer_factory.hpp:77] Creating layer relu3_2/dw
I0113 12:42:26.170537 2341102464 net.cpp:86] Creating Layer relu3_2/dw
I0113 12:42:26.170542 2341102464 net.cpp:408] relu3_2/dw <- conv3_2/dw
I0113 12:42:26.170547 2341102464 net.cpp:369] relu3_2/dw -> conv3_2/dw (in-place)
I0113 12:42:26.170553 2341102464 net.cpp:124] Setting up relu3_2/dw
I0113 12:42:26.170557 2341102464 net.cpp:131] Top shape: 64 128 28 28 (6422528)
I0113 12:42:26.170563 2341102464 net.cpp:139] Memory required for data: 3224109312
I0113 12:42:26.170567 2341102464 layer_factory.hpp:77] Creating layer conv3_2/sep
I0113 12:42:26.170583 2341102464 net.cpp:86] Creating Layer conv3_2/sep
I0113 12:42:26.170639 2341102464 net.cpp:408] conv3_2/sep <- conv3_2/dw
I0113 12:42:26.170660 2341102464 net.cpp:382] conv3_2/sep -> conv3_2/sep
I0113 12:42:26.171031 2341102464 net.cpp:124] Setting up conv3_2/sep
I0113 12:42:26.171046 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171057 2341102464 net.cpp:139] Memory required for data: 3275489536
I0113 12:42:26.171066 2341102464 layer_factory.hpp:77] Creating layer conv3_2/sep/bn
I0113 12:42:26.171103 2341102464 net.cpp:86] Creating Layer conv3_2/sep/bn
I0113 12:42:26.171115 2341102464 net.cpp:408] conv3_2/sep/bn <- conv3_2/sep
I0113 12:42:26.171125 2341102464 net.cpp:369] conv3_2/sep/bn -> conv3_2/sep (in-place)
I0113 12:42:26.171156 2341102464 net.cpp:124] Setting up conv3_2/sep/bn
I0113 12:42:26.171169 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171175 2341102464 net.cpp:139] Memory required for data: 3326869760
I0113 12:42:26.171183 2341102464 layer_factory.hpp:77] Creating layer conv3_2/sep/scale
I0113 12:42:26.171191 2341102464 net.cpp:86] Creating Layer conv3_2/sep/scale
I0113 12:42:26.171196 2341102464 net.cpp:408] conv3_2/sep/scale <- conv3_2/sep
I0113 12:42:26.171202 2341102464 net.cpp:369] conv3_2/sep/scale -> conv3_2/sep (in-place)
I0113 12:42:26.171211 2341102464 layer_factory.hpp:77] Creating layer conv3_2/sep/scale
I0113 12:42:26.171223 2341102464 net.cpp:124] Setting up conv3_2/sep/scale
I0113 12:42:26.171228 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171234 2341102464 net.cpp:139] Memory required for data: 3378249984
I0113 12:42:26.171241 2341102464 layer_factory.hpp:77] Creating layer relu3_2/sep
I0113 12:42:26.171245 2341102464 net.cpp:86] Creating Layer relu3_2/sep
I0113 12:42:26.171252 2341102464 net.cpp:408] relu3_2/sep <- conv3_2/sep
I0113 12:42:26.171257 2341102464 net.cpp:369] relu3_2/sep -> conv3_2/sep (in-place)
I0113 12:42:26.171263 2341102464 net.cpp:124] Setting up relu3_2/sep
I0113 12:42:26.171268 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171274 2341102464 net.cpp:139] Memory required for data: 3429630208
I0113 12:42:26.171278 2341102464 layer_factory.hpp:77] Creating layer conv4_1/dw
I0113 12:42:26.171285 2341102464 net.cpp:86] Creating Layer conv4_1/dw
I0113 12:42:26.171290 2341102464 net.cpp:408] conv4_1/dw <- conv3_2/sep
I0113 12:42:26.171296 2341102464 net.cpp:382] conv4_1/dw -> conv4_1/dw
I0113 12:42:26.171335 2341102464 net.cpp:124] Setting up conv4_1/dw
I0113 12:42:26.171341 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171347 2341102464 net.cpp:139] Memory required for data: 3481010432
I0113 12:42:26.171352 2341102464 layer_factory.hpp:77] Creating layer conv4_1/dw/bn
I0113 12:42:26.171358 2341102464 net.cpp:86] Creating Layer conv4_1/dw/bn
I0113 12:42:26.171363 2341102464 net.cpp:408] conv4_1/dw/bn <- conv4_1/dw
I0113 12:42:26.171368 2341102464 net.cpp:369] conv4_1/dw/bn -> conv4_1/dw (in-place)
I0113 12:42:26.171381 2341102464 net.cpp:124] Setting up conv4_1/dw/bn
I0113 12:42:26.171386 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171392 2341102464 net.cpp:139] Memory required for data: 3532390656
I0113 12:42:26.171399 2341102464 layer_factory.hpp:77] Creating layer conv4_1/dw/scale
I0113 12:42:26.171406 2341102464 net.cpp:86] Creating Layer conv4_1/dw/scale
I0113 12:42:26.171411 2341102464 net.cpp:408] conv4_1/dw/scale <- conv4_1/dw
I0113 12:42:26.171416 2341102464 net.cpp:369] conv4_1/dw/scale -> conv4_1/dw (in-place)
I0113 12:42:26.171422 2341102464 layer_factory.hpp:77] Creating layer conv4_1/dw/scale
I0113 12:42:26.171453 2341102464 net.cpp:124] Setting up conv4_1/dw/scale
I0113 12:42:26.171458 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171464 2341102464 net.cpp:139] Memory required for data: 3583770880
I0113 12:42:26.171470 2341102464 layer_factory.hpp:77] Creating layer relu4_1/dw
I0113 12:42:26.171476 2341102464 net.cpp:86] Creating Layer relu4_1/dw
I0113 12:42:26.171481 2341102464 net.cpp:408] relu4_1/dw <- conv4_1/dw
I0113 12:42:26.171486 2341102464 net.cpp:369] relu4_1/dw -> conv4_1/dw (in-place)
I0113 12:42:26.171491 2341102464 net.cpp:124] Setting up relu4_1/dw
I0113 12:42:26.171497 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.171507 2341102464 net.cpp:139] Memory required for data: 3635151104
I0113 12:42:26.171512 2341102464 layer_factory.hpp:77] Creating layer conv4_1/sep
I0113 12:42:26.171525 2341102464 net.cpp:86] Creating Layer conv4_1/sep
I0113 12:42:26.171531 2341102464 net.cpp:408] conv4_1/sep <- conv4_1/dw
I0113 12:42:26.171537 2341102464 net.cpp:382] conv4_1/sep -> conv4_1/sep
I0113 12:42:26.172219 2341102464 net.cpp:124] Setting up conv4_1/sep
I0113 12:42:26.172230 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.172237 2341102464 net.cpp:139] Memory required for data: 3686531328
I0113 12:42:26.172242 2341102464 layer_factory.hpp:77] Creating layer conv4_1/sep/bn
I0113 12:42:26.172250 2341102464 net.cpp:86] Creating Layer conv4_1/sep/bn
I0113 12:42:26.172255 2341102464 net.cpp:408] conv4_1/sep/bn <- conv4_1/sep
I0113 12:42:26.172260 2341102464 net.cpp:369] conv4_1/sep/bn -> conv4_1/sep (in-place)
I0113 12:42:26.172276 2341102464 net.cpp:124] Setting up conv4_1/sep/bn
I0113 12:42:26.172281 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.172287 2341102464 net.cpp:139] Memory required for data: 3737911552
I0113 12:42:26.172293 2341102464 layer_factory.hpp:77] Creating layer conv4_1/sep/scale
I0113 12:42:26.172300 2341102464 net.cpp:86] Creating Layer conv4_1/sep/scale
I0113 12:42:26.172304 2341102464 net.cpp:408] conv4_1/sep/scale <- conv4_1/sep
I0113 12:42:26.172310 2341102464 net.cpp:369] conv4_1/sep/scale -> conv4_1/sep (in-place)
I0113 12:42:26.172318 2341102464 layer_factory.hpp:77] Creating layer conv4_1/sep/scale
I0113 12:42:26.172328 2341102464 net.cpp:124] Setting up conv4_1/sep/scale
I0113 12:42:26.172333 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.172339 2341102464 net.cpp:139] Memory required for data: 3789291776
I0113 12:42:26.172374 2341102464 layer_factory.hpp:77] Creating layer relu4_1/sep
I0113 12:42:26.172381 2341102464 net.cpp:86] Creating Layer relu4_1/sep
I0113 12:42:26.172385 2341102464 net.cpp:408] relu4_1/sep <- conv4_1/sep
I0113 12:42:26.172391 2341102464 net.cpp:369] relu4_1/sep -> conv4_1/sep (in-place)
I0113 12:42:26.172397 2341102464 net.cpp:124] Setting up relu4_1/sep
I0113 12:42:26.172401 2341102464 net.cpp:131] Top shape: 64 256 28 28 (12845056)
I0113 12:42:26.172407 2341102464 net.cpp:139] Memory required for data: 3840672000
I0113 12:42:26.172412 2341102464 layer_factory.hpp:77] Creating layer conv4_2/dw
I0113 12:42:26.172418 2341102464 net.cpp:86] Creating Layer conv4_2/dw
I0113 12:42:26.172423 2341102464 net.cpp:408] conv4_2/dw <- conv4_1/sep
I0113 12:42:26.172430 2341102464 net.cpp:382] conv4_2/dw -> conv4_2/dw
I0113 12:42:26.172480 2341102464 net.cpp:124] Setting up conv4_2/dw
I0113 12:42:26.172487 2341102464 net.cpp:131] Top shape: 64 256 14 14 (3211264)
I0113 12:42:26.172493 2341102464 net.cpp:139] Memory required for data: 3853517056
I0113 12:42:26.172498 2341102464 layer_factory.hpp:77] Creating layer conv4_2/dw/bn
I0113 12:42:26.172504 2341102464 net.cpp:86] Creating Layer conv4_2/dw/bn
I0113 12:42:26.172509 2341102464 net.cpp:408] conv4_2/dw/bn <- conv4_2/dw
I0113 12:42:26.172515 2341102464 net.cpp:369] conv4_2/dw/bn -> conv4_2/dw (in-place)
I0113 12:42:26.172524 2341102464 net.cpp:124] Setting up conv4_2/dw/bn
I0113 12:42:26.172528 2341102464 net.cpp:131] Top shape: 64 256 14 14 (3211264)
I0113 12:42:26.172534 2341102464 net.cpp:139] Memory required for data: 3866362112
I0113 12:42:26.172540 2341102464 layer_factory.hpp:77] Creating layer conv4_2/dw/scale
I0113 12:42:26.172546 2341102464 net.cpp:86] Creating Layer conv4_2/dw/scale
I0113 12:42:26.172551 2341102464 net.cpp:408] conv4_2/dw/scale <- conv4_2/dw
I0113 12:42:26.172556 2341102464 net.cpp:369] conv4_2/dw/scale -> conv4_2/dw (in-place)
I0113 12:42:26.172569 2341102464 layer_factory.hpp:77] Creating layer conv4_2/dw/scale
I0113 12:42:26.172621 2341102464 net.cpp:124] Setting up conv4_2/dw/scale
I0113 12:42:26.172634 2341102464 net.cpp:131] Top shape: 64 256 14 14 (3211264)
I0113 12:42:26.172657 2341102464 net.cpp:139] Memory required for data: 3879207168
I0113 12:42:26.172667 2341102464 layer_factory.hpp:77] Creating layer relu4_2/dw
I0113 12:42:26.172682 2341102464 net.cpp:86] Creating Layer relu4_2/dw
I0113 12:42:26.172688 2341102464 net.cpp:408] relu4_2/dw <- conv4_2/dw
I0113 12:42:26.172693 2341102464 net.cpp:369] relu4_2/dw -> conv4_2/dw (in-place)
I0113 12:42:26.172701 2341102464 net.cpp:124] Setting up relu4_2/dw
I0113 12:42:26.172706 2341102464 net.cpp:131] Top shape: 64 256 14 14 (3211264)
I0113 12:42:26.172715 2341102464 net.cpp:139] Memory required for data: 3892052224
I0113 12:42:26.172720 2341102464 layer_factory.hpp:77] Creating layer conv4_2/sep
I0113 12:42:26.172727 2341102464 net.cpp:86] Creating Layer conv4_2/sep
I0113 12:42:26.172732 2341102464 net.cpp:408] conv4_2/sep <- conv4_2/dw
I0113 12:42:26.172739 2341102464 net.cpp:382] conv4_2/sep -> conv4_2/sep
I0113 12:42:26.174113 2341102464 net.cpp:124] Setting up conv4_2/sep
I0113 12:42:26.174121 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174129 2341102464 net.cpp:139] Memory required for data: 3917742336
I0113 12:42:26.174134 2341102464 layer_factory.hpp:77] Creating layer conv4_2/sep/bn
I0113 12:42:26.174139 2341102464 net.cpp:86] Creating Layer conv4_2/sep/bn
I0113 12:42:26.174144 2341102464 net.cpp:408] conv4_2/sep/bn <- conv4_2/sep
I0113 12:42:26.174150 2341102464 net.cpp:369] conv4_2/sep/bn -> conv4_2/sep (in-place)
I0113 12:42:26.174167 2341102464 net.cpp:124] Setting up conv4_2/sep/bn
I0113 12:42:26.174172 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174178 2341102464 net.cpp:139] Memory required for data: 3943432448
I0113 12:42:26.174185 2341102464 layer_factory.hpp:77] Creating layer conv4_2/sep/scale
I0113 12:42:26.174191 2341102464 net.cpp:86] Creating Layer conv4_2/sep/scale
I0113 12:42:26.174196 2341102464 net.cpp:408] conv4_2/sep/scale <- conv4_2/sep
I0113 12:42:26.174201 2341102464 net.cpp:369] conv4_2/sep/scale -> conv4_2/sep (in-place)
I0113 12:42:26.174211 2341102464 layer_factory.hpp:77] Creating layer conv4_2/sep/scale
I0113 12:42:26.174226 2341102464 net.cpp:124] Setting up conv4_2/sep/scale
I0113 12:42:26.174232 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174238 2341102464 net.cpp:139] Memory required for data: 3969122560
I0113 12:42:26.174244 2341102464 layer_factory.hpp:77] Creating layer relu4_2/sep
I0113 12:42:26.174250 2341102464 net.cpp:86] Creating Layer relu4_2/sep
I0113 12:42:26.174255 2341102464 net.cpp:408] relu4_2/sep <- conv4_2/sep
I0113 12:42:26.174260 2341102464 net.cpp:369] relu4_2/sep -> conv4_2/sep (in-place)
I0113 12:42:26.174266 2341102464 net.cpp:124] Setting up relu4_2/sep
I0113 12:42:26.174270 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174276 2341102464 net.cpp:139] Memory required for data: 3994812672
I0113 12:42:26.174281 2341102464 layer_factory.hpp:77] Creating layer conv5_1/dw
I0113 12:42:26.174288 2341102464 net.cpp:86] Creating Layer conv5_1/dw
I0113 12:42:26.174293 2341102464 net.cpp:408] conv5_1/dw <- conv4_2/sep
I0113 12:42:26.174299 2341102464 net.cpp:382] conv5_1/dw -> conv5_1/dw
I0113 12:42:26.174355 2341102464 net.cpp:124] Setting up conv5_1/dw
I0113 12:42:26.174362 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174368 2341102464 net.cpp:139] Memory required for data: 4020502784
I0113 12:42:26.174373 2341102464 layer_factory.hpp:77] Creating layer conv5_1/dw/bn
I0113 12:42:26.174379 2341102464 net.cpp:86] Creating Layer conv5_1/dw/bn
I0113 12:42:26.174386 2341102464 net.cpp:408] conv5_1/dw/bn <- conv5_1/dw
I0113 12:42:26.174391 2341102464 net.cpp:369] conv5_1/dw/bn -> conv5_1/dw (in-place)
I0113 12:42:26.174405 2341102464 net.cpp:124] Setting up conv5_1/dw/bn
I0113 12:42:26.174410 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174417 2341102464 net.cpp:139] Memory required for data: 4046192896
I0113 12:42:26.174422 2341102464 layer_factory.hpp:77] Creating layer conv5_1/dw/scale
I0113 12:42:26.174428 2341102464 net.cpp:86] Creating Layer conv5_1/dw/scale
I0113 12:42:26.174432 2341102464 net.cpp:408] conv5_1/dw/scale <- conv5_1/dw
I0113 12:42:26.174438 2341102464 net.cpp:369] conv5_1/dw/scale -> conv5_1/dw (in-place)
I0113 12:42:26.174445 2341102464 layer_factory.hpp:77] Creating layer conv5_1/dw/scale
I0113 12:42:26.174463 2341102464 net.cpp:124] Setting up conv5_1/dw/scale
I0113 12:42:26.174468 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174474 2341102464 net.cpp:139] Memory required for data: 4071883008
I0113 12:42:26.174482 2341102464 layer_factory.hpp:77] Creating layer relu5_1/dw
I0113 12:42:26.174489 2341102464 net.cpp:86] Creating Layer relu5_1/dw
I0113 12:42:26.174494 2341102464 net.cpp:408] relu5_1/dw <- conv5_1/dw
I0113 12:42:26.174499 2341102464 net.cpp:369] relu5_1/dw -> conv5_1/dw (in-place)
I0113 12:42:26.174504 2341102464 net.cpp:124] Setting up relu5_1/dw
I0113 12:42:26.174510 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.174515 2341102464 net.cpp:139] Memory required for data: 4097573120
I0113 12:42:26.174520 2341102464 layer_factory.hpp:77] Creating layer conv5_1/sep
I0113 12:42:26.174526 2341102464 net.cpp:86] Creating Layer conv5_1/sep
I0113 12:42:26.174531 2341102464 net.cpp:408] conv5_1/sep <- conv5_1/dw
I0113 12:42:26.174541 2341102464 net.cpp:382] conv5_1/sep -> conv5_1/sep
I0113 12:42:26.177327 2341102464 net.cpp:124] Setting up conv5_1/sep
I0113 12:42:26.177347 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.177356 2341102464 net.cpp:139] Memory required for data: 4123263232
I0113 12:42:26.177362 2341102464 layer_factory.hpp:77] Creating layer conv5_1/sep/bn
I0113 12:42:26.177371 2341102464 net.cpp:86] Creating Layer conv5_1/sep/bn
I0113 12:42:26.177376 2341102464 net.cpp:408] conv5_1/sep/bn <- conv5_1/sep
I0113 12:42:26.177384 2341102464 net.cpp:369] conv5_1/sep/bn -> conv5_1/sep (in-place)
I0113 12:42:26.177395 2341102464 net.cpp:124] Setting up conv5_1/sep/bn
I0113 12:42:26.177400 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.177407 2341102464 net.cpp:139] Memory required for data: 4148953344
I0113 12:42:26.177413 2341102464 layer_factory.hpp:77] Creating layer conv5_1/sep/scale
I0113 12:42:26.177419 2341102464 net.cpp:86] Creating Layer conv5_1/sep/scale
I0113 12:42:26.177424 2341102464 net.cpp:408] conv5_1/sep/scale <- conv5_1/sep
I0113 12:42:26.177430 2341102464 net.cpp:369] conv5_1/sep/scale -> conv5_1/sep (in-place)
I0113 12:42:26.177439 2341102464 layer_factory.hpp:77] Creating layer conv5_1/sep/scale
I0113 12:42:26.177464 2341102464 net.cpp:124] Setting up conv5_1/sep/scale
I0113 12:42:26.177470 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.177476 2341102464 net.cpp:139] Memory required for data: 4174643456
I0113 12:42:26.177482 2341102464 layer_factory.hpp:77] Creating layer relu5_1/sep
I0113 12:42:26.177489 2341102464 net.cpp:86] Creating Layer relu5_1/sep
I0113 12:42:26.177492 2341102464 net.cpp:408] relu5_1/sep <- conv5_1/sep
I0113 12:42:26.177498 2341102464 net.cpp:369] relu5_1/sep -> conv5_1/sep (in-place)
I0113 12:42:26.177505 2341102464 net.cpp:124] Setting up relu5_1/sep
I0113 12:42:26.177508 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.177515 2341102464 net.cpp:139] Memory required for data: 4200333568
I0113 12:42:26.177518 2341102464 layer_factory.hpp:77] Creating layer conv5_2/dw
I0113 12:42:26.177525 2341102464 net.cpp:86] Creating Layer conv5_2/dw
I0113 12:42:26.177531 2341102464 net.cpp:408] conv5_2/dw <- conv5_1/sep
I0113 12:42:26.177536 2341102464 net.cpp:382] conv5_2/dw -> conv5_2/dw
I0113 12:42:26.177691 2341102464 net.cpp:124] Setting up conv5_2/dw
I0113 12:42:26.177703 2341102464 net.cpp:131] Top shape: 64 512 14 14 (6422528)
I0113 12:42:26.177711 2341102464 net.cpp:139] Memory required for data: 4226023680
I0113 12:42:26.177716 2341102464 layer_factory.hpp:77] Creating layer conv5_2/dw/bn
I0113 12:42:26.177723 2341102464 net.cpp:86] Creating Layer conv5_2/dw/bn
I0113 12:42:26.177729 2

以上是关于CaffeCaffe按自己的分类类别重训Mobilenet的主要内容,如果未能解决你的问题,请参考以下文章

按类别分类的下拉列表

Magento - 按属性分类产品

在excel表格中设置啥公式能按类别自动求和

caffecaffe在linux环境下的安装与编译

风险类别相关知识

[转]kaldi基于GMM做分类问题