moviepy处理视频帧和遍历的方式处理视频帧速度对比。

Posted AI浩

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了moviepy处理视频帧和遍历的方式处理视频帧速度对比。相关的知识,希望对你有一定的参考价值。

文章目录

摘要

MoviePy是一个用于视频编辑的Python模块,它可被用于一些基本操作(如剪切、拼接、插入标题)、视频合成(即非线性编辑)、视频处理和创建高级特效。它可对大多数常见视频格式进行读写,包括GIF。
手册:http://doc.moviepy.com.cn/index.html#document-index
示例如下(IPython Notebook环境)

下载与安装

pip install moviepy

工作原理

MoviePy使用ffmpeg软件来读取和导出视频和音频文件。也使用(可选)ImageMagick来生成文字和制作GIF文件。不同媒体的处理依靠Python的快速的数学库Numpy。高级效果和增强功能使用一些Python的图片处理库(PIL,Scikit-image,scipy等)。

基本概念

在MoviePy中,核心对象是剪辑,可以使用AudioClips或VideoClips来处理。剪辑可被修改(剪切、降低速度、变暗等)或与其他剪辑混合组成新剪辑。剪辑可被预览(使用PyGame或IPython Notebook),也可生成文件(如MP4文件、GIF文件、MP3文件等)。以VideoClips为例,它可以由一个视频文件、一张图片、一段文字或者一段卡通动画而来。它可以包含音频轨道(即AudioClip)和一个遮罩(一种特殊的VideoClip),用于表明当两个剪辑混合时,哪一部分的画面被隐藏)。详见生成与导出视频剪辑和混合剪辑。

你可使用MoviePy的很多效果对一个剪辑进行修改(如clip.resize(width=“360”)、clip.subclip(t1,t2)、clip.fx(vfx.black_white)或使用用户自行实现的效果。MoviePy提供许多函数(如clip.fl、clip.fx等),可以用简单的几行代码实现你自己的效果。详见视频转换与效果。

你还可以在moviepy.video.tools找到一些高级的效果来对视频中的对象进行追踪、画简单的形状和颜色渐变(对于遮罩来说很有用)、生成字幕和结束时的演职人员表等。参见高级工具中的详细描述。

最后,尽管MoviePy没有生动的用户界面,它也有许多方法来预览剪辑,使你能够调试脚本,从而确保你的视频在高质量的同时一切正常。详见如果更有效率地使用MoviePy。

速度对比

测试遍历的方式

新建脚本Opencv_demo.py,插入代码:

import laneDetection
import time
import cv2
import preprocess

t1=time.time()
vs = cv2.VideoCapture('..\\\\data\\\\dashcam_video_trim.mp4')
fps = 30    #保存视频的FPS,可以适当调整
size=(1280,720)#宽高,根据frame的宽和高确定。
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
videoWriter = cv2.VideoWriter('3.mp4',fourcc,fps,size)#最后一个是保存图片的尺寸
# 循环播放图像流中的帧
while True:
    # 从视频流中读取下一帧并调整其大小
    (grabbed, frame)  = vs.read()
    if not grabbed:
        break
    image = frame
    frame, invM = preprocess.warp(frame)
    frame = preprocess.grayscale(frame)
    frame = preprocess.threshold(frame)
    frame, left_curverad, right_curverad = laneDetection.search_around_poly(frame)
    frame = cv2.warpPerspective(frame, invM, (frame.shape[1], frame.shape[0]), flags=cv2.INTER_LINEAR)
    frame = cv2.addWeighted(frame, 0.3, image, 0.7, 0)

    # Add curvature and distance from the center
    curvature = (left_curverad + right_curverad) / 2
    car_pos = image.shape[1] / 2
    center = (abs(car_pos - curvature) * (3.7 / 650)) / 10
    curvature = 'Radius of Curvature: ' + str(round(curvature, 2)) + 'm'
    center = str(round(center, 3)) + 'm away from center'
    frame = cv2.putText(frame, curvature, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
    frame = cv2.putText(frame, center, (50, 100), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
    videoWriter.write(frame)
    key = cv2.waitKey(1) & 0xFF
    # 如果按下“ q”键,则退出循环
    if key == ord("q"):
        break
videoWriter.release()
cv2.destroyAllWindows()
vs.release()
t2=time.time()
print(t2-t1)

结果如下:

测试moviepy方式处理图片的帧

新建main.py,插入代码:

import time

import cv2
import preprocess
import calibrateCamera
import laneDetection
from moviepy.editor import VideoFileClip


def pipeline(frame):
    image = frame

    #Disabled, techinically each frame needs to be undistored before being processed.
    #objpoints, imgpoints = [] #Add them manually
    #frame = calibrateCamera.calibrate(objpoints, imgpoints, frame)

    frame, invM = preprocess.warp(frame)
    frame = preprocess.grayscale(frame)
    frame = preprocess.threshold(frame)
    frame, left_curverad, right_curverad = laneDetection.search_around_poly(frame)
    frame = cv2.warpPerspective(frame, invM, (frame.shape[1], frame.shape[0]), flags=cv2.INTER_LINEAR)
    frame = cv2.addWeighted(frame, 0.3, image, 0.7, 0)

    #Add curvature and distance from the center
    curvature = (left_curverad + right_curverad) / 2
    car_pos = image.shape[1] / 2
    center = (abs(car_pos - curvature)*(3.7/650))/10
    curvature = 'Radius of Curvature: ' + str(round(curvature, 2)) + 'm'
    center = str(round(center, 3)) + 'm away from center'
    frame = cv2.putText(frame, curvature, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
    frame = cv2.putText(frame, center, (50, 100), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
    return frame

def debugFrames(file):
    cap = cv2.VideoCapture(file)
    if(cap.isOpened()==False):
        print('Error opening the file, check its format')
    cap.set(1, 100)
    res, frame = cap.read()
    #frame = pipeline(objpoints, imgpoints, frame) uncomment if using for
    frame = pipeline(frame)
    cv2.imshow('Frame', frame)
    cv2.waitKey(10000)

def processFrames(infile, outfile):
    output = outfile
    clip = VideoFileClip(infile)
    processingClip = clip.fl_image(pipeline)
    processingClip.write_videofile(output,fps=30, audio=True)

def main(infile, outfile):
    #objpoints, imgpoints = calibrate() uncomment, provided you have calibration pictures
    processFrames(infile, outfile)

if __name__ == "__main__":
    infile = "..\\\\data\\\\dashcam_video_trim.mp4"
    outfile = "..\\\\data\\\\dashcam_video_trim_output.mp4"
    t1=time.time()
    main(infile, outfile)
    t2=time.time()
    print(t2-t1)

结果如下:

结论

moviepy处理图片的帧比直接遍历快了7秒。速度提升了不少。
本例用到代码和资料详见:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/86757342

以上是关于moviepy处理视频帧和遍历的方式处理视频帧速度对比。的主要内容,如果未能解决你的问题,请参考以下文章

如何将视频帧分类为包含对象的帧和无意义的帧

python也能玩视频剪辑!moviepy操作记录总结

教你一个快速视频处理的神器:Python moviepy

MoviePy:减慢视频的渲染速度

Moviepy+OpenCV-python 结合进行音视频剪辑处理的一种建议模式

使用ffmpeg从视频文件中提取音频文件视频抽帧和切割视频