基于大数据开发套件定时调度带资源文件的MapReduce作业

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于大数据开发套件定时调度带资源文件的MapReduce作业相关的知识,希望对你有一定的参考价值。

MaxCompute里的MR作业,很少是只要跑一次就好了的。如果需要周期性调度,目前MaxCompute(原名ODPS)只提供了计算引擎,任务调度可以使用大数据开发套件来实现。这篇帖子从基础开始,介绍了3种周期性调度的方法。同时还介绍了如何使用资源文件。

代码开发

代码以文档里的WordCount 作为例子。
在这个基础上,增加资源文件的读取方法,修改Reduce类。主要的逻辑是读取资源文件,资源文件里的数据格式是字符串1,字符串2。代码逻辑是如果word count里的word如果有在字符串1里出现的话,就替换成字符串2。

    public static class SumReducer extends ReducerBase {
        private Record result = null;
        private Map<String,String> maps = null;

        @Override
        public void setup(TaskContext context) throws IOException {
            result = context.createOutputRecord();
            maps = new HashMap<String,String>();
            StringBuilder importdata = new StringBuilder();
            BufferedInputStream bufferedInput = null;
            try {
                byte[] buffer = new byte[1024];
                int bytesRead = 0;
                //读取资源文件的内容
                bufferedInput = context.readResourceFileAsStream("resource.txt");

                while ((bytesRead = bufferedInput.read(buffer)) != -1) {
                    String chunk = new String(buffer, 0, bytesRead);
                    importdata.append(chunk);
                }
                //解析资源文件的内容,把替换前,替换后的数据放到map里
                String lines[] = importdata.toString().split("\n");
                for (int i = 0; i < lines.length; i++) {
                    String[] ss = lines[i].split(",");
                    maps.put(ss[0].trim(), ss[1].trim());
                    System.out.println(ss[0]+"->"+ss[1]);
                }
            } catch (FileNotFoundException ex) {
                throw new IOException(ex);
            } catch (IOException ex) {
                throw new IOException(ex);
            } finally {
            }
        }

        @Override
        public void reduce(Record key, Iterator<Record> values,
                TaskContext context) throws IOException {
            long count = 0;
            while (values.hasNext()) {
                Record val = values.next();
                count += (Long) val.get(0);
            }
            String value = key.get(0).toString();
            if(maps.containsKey(value)){
                System.out.println(value+"->"+maps.get(value));
                value = maps.get(value);

            }
            result.set(0, value);
            result.set(1, count);
            context.write(result);
        }
    }

具体资源文件的用法可以参考文档 ,这里就不再多解释了。

客户端调用

对于测试数据,源文件的内容为

odps,MaxCompute
hello,Hello

我们先用手工调度来跑这个MR,这里跑通了后后面的所有的配置就很容易明白了。
首先需要把代码打出的jar包,和这个resource.txt文件上传到服务器上

>add jar D:\cx_word_count.jar -f;
OK: Resource ‘cx_word_count.jar‘ have been updated.
>add file D:\resource.txt -f;
OK: Resource ‘resource.txt‘ have been updated.

然后通过命令行来调用

jar -resources cx_word_count.jar,resource.txt -classpath D:\cx_word_count.jar com.aliyun.odps.mr.WordCount;

这里的-resources引用的是跑在服务器上的,-classpath是用来找到main方法的。理解这个对后面配置同步任务很有帮助。可以参阅文档

Crontab调用

odpscmd客户端有一个参数,是-e,可以在shell里直接调用jar命令来跑MR,当然也可以使用odpscmd -f来再调用一个脚本文件,但是这样有点麻烦了。这里就直接用-e来做。

你可以先用

/odps/cmd/bin/odpscmd  -e "jar -resources cx_word_count.jar,resource.txt -classpath /odps/cx_word_count.jar com.aliyun.odps.mr.WordCount;"

在Linux服务器上运行任务。注意安装odpscmd配置前需要先配置好java环境。然后后面的Crontab的配置就不展开了。

MR作业

配置DataIDE的MR作业的界面,很容易就让人想到MR任务的main方法。其实就是DataIDE会根据配置自己生成main方法,然后去调用MaxCompute上的任务。具体的配置可以参考这个截图:
技术分享
可以在右边看到可以配置任务的调度周期和上下游依赖,从而实现每天的定时调度,而且还能是保证上游的数据导入、预处理完成后才开始做MR操作,非常好用。

Shell任务

上述的MR任务简单方便,但是DataIDE出于安全考虑,不让用户自己写main方法。如果需要用到诸如传参数之类的功能,可以自己写Shell任务,但是调度让DataIDE来做。这样就集上面两个方法之长了。

Shell任务需要先参考文档 先配置调度的ECS信息,这里不再展开。完成后写一个Shell脚本,内容为

##@resource_reference{"cx_word_count.jar,resource.txt"}
/opt/taobao/tbdpapp/odpswrapper/odpsconsole/bin/odpscmd   -u  testid  -p  testkey  --project=testproject --endpoint=http://service.odps.aliyun.com/api  -e "jar -resources cx_word_count.jar,resource.txt  -classpath /odps/cx_word_count.jar  com.aliyun.odps.mr.WordCount"

要把里面的Access id/key,Project 替换成你自己的,然后开始测试代码。需要特别注意的是,** Shell任务是在机器上的admin账号下运行的** ,如果发现各种奇怪的错误,比如明明存在的文件找不到一类的错误,可以先su - admin,调试下Shell命令,或者访问下对应的文件,看看是否是环境变量,文件目录权限的问题。另外也可以把错误日志重定向到某个文件里,比如/tmp文件夹下的某个临时日志文件里,方便事后调试。大家可以在admin账号下把shell调试通过后再放到数加上去调用。

另外Shell任务可以调整调度的机器,可以参考
技术分享

阅读原文请点击






以上是关于基于大数据开发套件定时调度带资源文件的MapReduce作业的主要内容,如果未能解决你的问题,请参考以下文章

SqlServerMySqlOracle数据库监控系统

ACA - 大数据开发套件 DataIDE

ACA - 大数据开发套件 DataIDE

基于Hue和Oozie的自动化调度

Python 定时调度

基于文心大模型套件ERNIEKit实现文本匹配算法,模块化方便应用落地