深入理解glibc malloc:malloc() 与 free() 原理图解

Posted linux大本营

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入理解glibc malloc:malloc() 与 free() 原理图解相关的知识,希望对你有一定的参考价值。

本文分为三个等级自顶向下地分析了glibc中内存分配与回收的过程。本文不过度关注细节,因此只是分别从arena层次、bin层次、chunk层次进行图解,而不涉及有关指针的具体操作。

前言

在展开本文之前,先解释一下本文中会提到的三个重要概念:arena,bin,chunk。三者在逻辑上的蕴含关系一般如下图所示(图中的chunk严格来说应该是Free Chunk)。

 三者概念的解释如下:

arena:通过sbrk或mmap系统调用为线程分配的堆区,按线程的类型可以分为2类:

  • main arena:主线程建立的arena;
  • thread arena:子线程建立的arena;

chunk:逻辑上划分的一小块内存,根据作用不同分为4类:

  • Allocated chunk:即分配给用户且未释放的内存块;
  • Free chunk:即用户已经释放的内存块;
  • Top chunk
  • Last Remainder chunk

bin:一个用以保存Free chunk链表的表头信息的指针数组,按所悬挂链表的类型可以分为4类:

  • Fast bin
  • Unsorted bin
  • Small bin
  • Large bin

在这里读者仅需明白arena的等级大于bin的等级大于(free)chunk的等级即可,即A>B>C。

tips:

实际内存中,main arena和thread arena的图示如下(单堆段)。

 其中malloc_state的数据结构描述在源代码中发现该数据结构中保存着fastbinsY、top、last_remainder、bins这四个分别表示Fast bin、Top chunk、Last Remainder chunk、bins(Unsorted bin、 Small bin、Large bin)的数据。

Arena级分析

此处从Arena的层次分析内存分配与回收的过程。

main arena中的内存申请

main arena中的内存申请的流程如下图所示:

 第一次申请

  • 根据申请内存空间大小是否达到mmap这一系统调用的分配阈值,决定是使用sbrk系统调用 还是mmap系统调用申请堆区。一般分配的空间比申请的要大,这样可以减少后续申请中向操作系统申请内存的次数。
  • 举例而言,用户申请1000字节的内存,实际会通过sbrk系统调用产生132KB的连续堆内存区域。
  • 然后将用户申请大小的内存返回。(本例中将返回1000字节的内存。)

后续申请

  • 根据arena中剩余空间的大小决定是继续分配还是扩容,其中包含扩容部分的为top chunk。
  • 然后将用户申请大小的内存返回。

tips: top chunk不属于任何bin!只有free chunk依附于bin! 分配阈值具有默认值,但会动态调整; 扩容具体过程见库函数sYSMALLOc 。

thread arena中的申请

thread arena中的内存申请的流程如下图所示:

 其流程类似于main arena的,区别在于thread arena的堆内存是使用mmap系统调用产生的,而非同主线程一样可能会使用sbrk系统调用。

tips:Arena的数量与线程之间并不一定是一一映射的关系。如,在32位系统中有着“ Number of arena = 2 * number of cores + 1”的限制。

相关视频推荐

Linux内核内存管理——内存泄漏、栈溢出、虚拟地址布局、内存映射、内存模型、伙伴分配器

90分钟了解Linux内存架构,numa的优势,slab的实现,vmalloc的原理

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要更多C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,内核,nginx,ZeroMQ,mysql,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg,大厂面试题 等)

 

内存回收

 线程释放的内存不会直接返还给操作系统,而是返还给’glibc malloc’。

bin级分析

此处从bin的层次分析内存分配与回收的过程。考虑到内存回收的过程比内存分配的过程要复杂,因此这里先分析内存回收的过程,再分析内存分配的过程。

内存回收

内存回收的流程如下图所示:

 bin可以分为4类:Fast bin、Unsorted bin、Small bin和 Large bin。保存这些bin的数据结构为fastbinsY以及bins:

fastbinsY:用以保存fast bins。(可索引大小16~64B的内存块)

bins:用以保存unsorted、small以及large bins,共计可容纳126个:

  • Bin 1 – unsorted bin
  • Bin 2 to Bin 63 – small bin(可索引大小<512B的内存块)
  • Bin 64 to Bin 126 – large bin(可索引大小≥512B的内存块)

在内存被释放的时候,被释放内存块会根据其大小而被添加入对应的bin中:

  • 16~64B的内存块会被添加入fastbinY中
  • samll及large的会添加在bins中的unsorted bins中。

tips:small bins和large bins中索引的内存块是在内存分配的过程中被添加在相应的bin中的。

内存分配

内存分配的流程如下图所示:

 我们知道,内存分配的最终目的在于分配出合适大小的内存块返回给用户。在实现中即为在bin或top chunk中找到(并分割出)所需内存块,其检索的优先级从高到低分别是:

  1. fastbinY
  2. small bins
  3. unsorted bins
  4. large bins
  5. top bins

tips: Fast bin、Unsorted bin、Small bin和 Large bin中保存的都是用户曾经释放的内存块(可能经过合并); top chunk包含Arena扩容的部分,不属于任何bin!

chunk级分析

本文不过度关注操作细节,因此有关内存回收的过程就不赘述了。下图即内存分配的详细过程图:

tips:保存或新窗口打开图片可以查看原图。

具体分配说明参见下列引用内容:

1、获取分配区的锁,为了防止多个线程同时访问同一个分配区,在进行分配之前需要取得分配区域的锁。线程先查看线程私有实例中是否已经存在一个分配区,如果存在尝试对该分配区加锁,如果加锁成功,使用该分配区分配内存,否则,该线程搜索分配区循环链表试图获得一个空闲(没有加锁)的分配区。如果所有的分配区都已经加锁,那么ptmalloc会开辟一个新的分配区,把该分配区加入到全局分配区循环链表和线程的私有实例中并加锁,然后使用该分配区进行分配操作。开辟出来的新分配区一定为非主分配区,因为主分配区是从父进程那里继承来的。开辟非主分配区时会调用mmap()创建一个sub-heap,并设置好top chunk。

2、将用户的请求大小转换为实际需要分配的chunk空间大小。

3、判断所需分配chunk的大小是否满足chunk_size <= max_fast (max_fast 默认为 64B),如果是的话,则转下一步,否则跳到第5步。

4、首先尝试在fast bins中取一个所需大小的chunk分配给用户。如果可以找到,则分配结束。否则转到下一步。

5、判断所需大小是否处在small bins中,即判断chunk_size < 512B是否成立。如果chunk大小处在small bins中,则转下一步,否则转到第6步。

6、根据所需分配的chunk的大小,找到具体所在的某个small bin,从该bin的尾部摘取一个恰好满足大小的chunk。若成功,则分配结束,否则,转到下一步。

7、到了这一步,说明需要分配的是一块大的内存,或者small bins中找不到合适的 chunk。于是,ptmalloc首先会遍历fast bins中的chunk,将相邻的chunk进行合并,并链接到unsorted bin中,然后遍历unsorted bin中的chunk,如果unsorted bin只有一个chunk,并且这个chunk在上次分配时被使用过,并且所需分配的chunk大小属于small bins,并且chunk的大小大于等于需要分配的大小,这种情况下就直接将该chunk进行切割,分配结束,否则将根据chunk的空间大小将其放入small bins或是large bins中,遍历完成后,转入下一步。

8、到了这一步,说明需要分配的是一块大的内存,或者small bins和unsorted bin中都找不到合适的 chunk,并且fast bins和unsorted bin中所有的chunk都清除干净了。从large bins中按照“smallest-first,best-fit”原则,找一个合适的 chunk,从中划分一块所需大小的chunk,并将剩下的部分链接回到bins中。若操作成功,则分配结束,否则转到下一步。

9、如果搜索fast bins和bins都没有找到合适的chunk,那么就需要操作top chunk来进行分配了。判断top chunk大小是否满足所需chunk的大小,如果是,则从top chunk中分出一块来。否则转到下一步。

10、到了这一步,说明top chunk也不能满足分配要求,所以,于是就有了两个选择: 如果是主分配区,调用sbrk(),增加top chunk大小;如果是非主分配区,调用mmap来分配一个新的sub-heap,增加top chunk大小;或者使用mmap()来直接分配。在这里,需要依靠chunk的大小来决定到底使用哪种方法。判断所需分配的chunk大小是否大于等于 mmap分配阈值,如果是的话,则转下一步,调用mmap分配,否则跳到第12步,增加top chunk 的大小。

11、使用mmap系统调用为程序的内存空间映射一块chunk_size align 4kB大小的空间。 然后将内存指针返回给用户。

12、判断是否为第一次调用malloc,若是主分配区,则需要进行一次初始化工作,分配一块大小为(chunk_size + 128KB) align 4KB大小的空间作为初始的heap。若已经初始化过了,主分配区则调用sbrk()增加heap空间,分主分配区则在top chunk中切割出一个chunk,使之满足分配需求,并将内存指针返回给用户。

以上是关于深入理解glibc malloc:malloc() 与 free() 原理图解的主要内容,如果未能解决你的问题,请参考以下文章

Malloc碎碎念

理解 glibc malloc:主流用户态内存分配器实现原理

从上到下看linux内存管理--glibc malloc

Understanding glibc malloc待译

glibc的malloc钩子

glibc中malloc的详细解释_转