Leetcode刷题Python63. 不同路径 II
Posted Better Bench
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode刷题Python63. 不同路径 II相关的知识,希望对你有一定的参考价值。
1 题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
2 解析
状态:从左上角到右下角不同的路径数量
状态转移:
- 在第一行时,即
i
=
0
,
j
>
0
i=0,j>0
i=0,j>0,只能当前状态只能来自后一列的状态,
f ( x ) = f ( i , j − 1 ) f(x) = f(i, j - 1) f(x)=f(i,j−1) - 在第一列时,即
i
>
0
,
j
=
0
i>0,j=0
i>0,j=0,只能当前状态只能来自后一行的状态
f ( x ) = f ( i − 1 , j ) f(x) = f(i-1, j ) f(x)=f(i−1,j) - 其他行和其他列,即
i
>
0
,
j
>
0
i>0,j> 0
i>0,j>0,只能当前状态来自后一行和后列的状态的和
f ( x ) = f ( i − 1 , j ) + f ( i , j − 1 ) f(x) = f(i-1, j ) +f(i, j-1 ) f(x)=f(i−1,j)+f(i,j−1) - 一旦遇到阻碍,即
u
(
i
,
j
)
=
1
u(i,j) =1
u(i,j)=1
f ( x ) = 0 f(x) = 0 f(x)=0
状态转移方程为以下
f
(
x
)
=
f
(
i
−
1
,
j
)
+
f
(
i
,
j
−
1
)
u
(
i
,
j
)
=
0
i
>
0
,
j
>
0
f
(
i
−
1
,
j
)
u
(
i
,
j
)
=
0
i
>
0
,
j
=
0
f
(
i
,
j
−
1
)
u
(
i
,
j
)
=
0
i
=
0
,
j
>
0
0
u
(
i
,
j
)
=
1
f(x)=\\left\\ \\beginaligned f(i - 1, j) + f(i, j - 1) & & u(i, j) = 0 & &i>0,j>0\\\\ f(i - 1, j) & & u(i, j) = 0 & &i>0,j=0\\\\ f(i, j - 1) & & u(i, j) = 0 & &i=0,j>0\\\\ 0 & & u(i, j) = 1 \\\\ \\endaligned \\right.
f(x)=⎩
⎨
⎧f(i−1,j)+f(i,j−1)f(i−1,j)f(i,j−1)0u(i,j)=0u(i,j)=0u(i,j)=0u(i,j)=1i>0,j>0i>0,j=0i=0,j>0
3 Python实现
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
# 初始化边界,第一行和第一列
f = [[1]*n ]+ [[1]*n +[0]*(n-1) for _ in range(m-1)]
for i in range(0,m):
for j in range(0,n):
if obstacleGrid[i][j] ==0:
if i >0 and j>0:
f[i][j] = f[i-1][j]+f[i][j-1]
elif i>0 and j==0:
f[i][j] = f[i-1][j]
elif i==0 and j>0:
f[i][j] = f[i][j-1]
else:
f[i][j] = 0
return f[m-1][n-1]
以上是关于Leetcode刷题Python63. 不同路径 II的主要内容,如果未能解决你的问题,请参考以下文章