跳表 skiplist
Posted 小倪同学 -_-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了跳表 skiplist相关的知识,希望对你有一定的参考价值。
文章目录
跳表的概念
skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为key或者key/value的查找模型。
skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: AProbabilistic Alternative to Balanced Trees》。
skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一个有序的链表,查找数据的时间复杂度是O(N)。
William Pugh优化思路:
- 假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图b所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半。
- 以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图c,这样搜索效率就进一步提高了。
- skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。
- skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图
skiplist的效率保证
上面我们说到,skiplist插入一个节点时随机出一个层数,那么如何保证搜索时的效率呢?
这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限
制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:
在Redis的skiplist实现中,这两个参数的取值为:
p = 1/4
maxLevel = 32
根据前面randomLevel()的伪码,我们很容易看出,产生越高的节点层数,概率越低。
- 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
- 节点层数恰好等于1的概率为1-p。
- 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
- 节点层数大于等于3的概率为p2,而节点层数恰好等于3的概率为p2*(1-p)。
- 节点层数大于等于4的概率为p3,而节点层数恰好等于4的概率为p3*(1-p)。
- …
跳表的平均时间复杂度为O(logN),计算过程参考这篇博客Redis内部数据结构详解(6)——skiplist
skiplist的实现
#include <iostream>
#include <vector>
#include <time.h>
#include <random>
#include <chrono>
using namespace std;
struct SkiplistNode
int _val;
vector<SkiplistNode*> _nextV;
SkiplistNode(int val, int level)
:_val(val)
, _nextV(level, nullptr)
;
class Skiplist
typedef SkiplistNode Node;
public:
Skiplist()
srand(time(0));
// 头节点,层数是1
_head = new SkiplistNode(-1, 1);
bool search(int target)
Node* cur = _head;
int level = _head->_nextV.size() - 1;
while (level >= 0)
// 目标值比下一个节点值要大,向右走
// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
if (cur->_nextV[level] && cur->_nextV[level]->_val < target)
// 向右走
cur = cur->_nextV[level];
else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target)
// 向下走
--level;
else
return true;
return false;
vector<Node*> FindPrevNode(int num)
Node* cur = _head;
int level = _head->_nextV.size() - 1;
// 插入位置每一层前一个节点指针
vector<Node*> prevV(level + 1, _head);
while (level >= 0)
// 目标值比下一个节点值要大,向右走
// 下一个节点是空(尾),目标值比下一个节点值要小,向下走
if (cur->_nextV[level] && cur->_nextV[level]->_val < num)
// 向右走
cur = cur->_nextV[level];
else if (cur->_nextV[level] == nullptr
|| cur->_nextV[level]->_val >= num)
// 更新level层前一个
prevV[level] = cur;
// 向下走
--level;
return prevV;
void add(int num)
vector<Node*> prevV = FindPrevNode(num);
int n = RandomLevel();
Node* newnode = new Node(num, n);
// 如果n超过当前最大的层数,那就升高一下_head的层数
if (n > _head->_nextV.size())
_head->_nextV.resize(n, nullptr);
prevV.resize(n, _head);
// 链接前后节点
for (size_t i = 0; i < n; ++i)
newnode->_nextV[i] = prevV[i]->_nextV[i];
prevV[i]->_nextV[i] = newnode;
bool erase(int num)
vector<Node*> prevV = FindPrevNode(num);
// 第一层下一个不是val,val不在表中
if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)
return false;
else
Node* del = prevV[0]->_nextV[0];
// del节点每一层的前后指针链接起来
for (size_t i = 0; i < del->_nextV.size(); i++)
prevV[i]->_nextV[i] = del->_nextV[i];
delete del;
// 如果删除最高层节点,把头节点的层数也降一下
int i = _head->_nextV.size() - 1;
while (i >= 0)
if (_head->_nextV[i] == nullptr)
--i;
else
break;
_head->_nextV.resize(i + 1);
return true;
int RandomLevel()
size_t level = 1;
// rand() ->[0, RAND_MAX]之间
while (rand() <= RAND_MAX*_p && level < _maxLevel)
++level;
return level;
//int RandomLevel()
//
// static std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count());
// static std::uniform_real_distribution<double> distribution(0.0, 1.0);
// size_t level = 1;
// while (distribution(generator) <= _p && level < _maxLevel)
//
// ++level;
//
// return level;
//
void Print()
Node* cur = _head;
while (cur)
printf("%2d\\n", cur->_val);
// 打印每个每个cur节点
for (auto e : cur->_nextV)
printf("%2s", "↓");
printf("\\n");
cur = cur->_nextV[0];
private:
Node* _head;
size_t _maxLevel = 32;
double _p = 0.5;
;
skiplist VS 平衡搜索树
skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差
不多。
skiplist的优势是:
- skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。
- skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。
skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包
含的平均指针数目为1.33
skiplist VS 哈希表
skiplist相比哈希表而言,就没有那么大的优势了。
相比而言
- 哈希表平均时间复杂度是O(1),比skiplist快。
- 哈希表空间消耗略多一点。
skiplist优势如下:
- 遍历数据有序
- skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。
- 哈希表扩容有性能损耗。
- 哈希表再极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力
以上是关于跳表 skiplist的主要内容,如果未能解决你的问题,请参考以下文章